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Abstract 
The purpose of this research was to establish test methods for characterizing the interaction 

between the hydraulic fluid and hydraulic hose at clipping points in mobile heavy 

equipment hydraulic systems. A simple hydraulic circuit test bench was developed and the 

laboratory axial piston pump was characterized using ISO 10767-1. A direct relationship 

between the fluidborne noise and structureborne noise present at each hose clip location 

was observed for a specific operating condition using operating deflection shapes and 

structureborne noise measurements. This result shows that optimal hose clip placement can 

be a viable solution to structureborne noise reduction. Additionally, a modal superposition 

method for predicting pressure ripple at any point in the pump outlet hose was established 

using order-based modal analysis. The fluidborne noise in the circuit was balanced in a 

power flow approach and compared to fluidborne noise predictions at the mounts.
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1 Introduction 
Hydraulic systems are used in mobile heavy equipment for their high power 

density. This means that a well-designed hydraulic circuit can produce more power for its 

size than any other available actuation system. The hydraulic engineer needs to direct this 

power from the pump to the actuator which results in a complex hydraulic network of 

hoses, control valves, cylinders, and various branching junctions. The need to maximize 

the power available from a given pump has driven designers to use smaller hydraulic lines 

and higher pressures. This solution comes at a cost in the form of increased vibrational 

energy in the hydraulic fluid which exists as periodic fluctuations in pressure and flow. 

Although the fluid itself may be a poor acoustic radiator, the hydraulic fluid and hose 

interaction can transmit the fluid energy into the frame at any hose clip attachment location. 

Unlike industrial hydraulics where hoses can be routed to massive foundational structures, 

mobile heavy equipment manufacturers must route all hydraulic lines to frame members or 

compliant enclosure assemblies. If the fluid energy exists at frequencies near the structural 

resonances, significant vibration or audible noise issues can result. These issues have the 

potential to affect the sale of the machine, the reliability of the machine and, in some 

circumstances as indicated by certain occupational noise exposure research, the health of 

the operator [1]. 

There is a need for lab-based experimental studies on real heavy equipment circuits 

to help understand fluid vibrational energy flow from the pump to each clipping point. This 

will help validate models and create design tools for hydraulic hose routing. Background 

information is provided on hydraulic noise mechanisms and existing experimental fluid-
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structure interaction research for hydraulic piping systems. A test bench is developed at 

Michigan Technological University to analyze the fluidborne to structure-borne energy 

transmission at hose clip locations based on a reference hydraulic circuit. The noise energy 

in the hydraulic pump, hydraulic fluid, and hose structure is characterized using test 

methods to show that optimized hose clip location can be a viable solution to structureborne 

noise reduction. The measurements were formulated into energy assessment metrics and a 

method was developed to balance the fluidborne energy from the pump through the outlet 

hose using a power flow approach. 

1.1 Motivation 

Hydraulic noise is a significant issue in the development of heavy equipment 

machines. The hydraulic noise can contribute to the overall noise level potentially harming 

the hearing of the operator or exist as an annoyance that may lead to negative perceptions 

of the machine quality. The job of a machine operator is stressful due to high demand for 

productivity over long shifts on construction and mine sites. High vibration or 

uncomfortable noise in the machine cab will contribute to operator fatigue and, according 

to some research, may affect the operator’s ability to make safe decisions while at work in 

certain circumstances [2]. 

The hydraulic noise originates at the pump outlet and passes through the system as 

FBN energy. This FBN energy interacts with the hose wall where it is transferred into the 

frame of the machine at any hose clip attachment location. If the fluid or hydraulic hose 

resonances exist near the resonances of the attachment structure, significant SBN issues 
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could result. There is currently no test method to characterize the FBN transmission 

through a hose for quantifying the FBN to SBN energy transfer. This project seeks to 

develop a method for obtaining the fluid and line resonances of a simple hydraulic system 

to understand SBN contributors. The results should confirm that placement of hose clips 

away from high FBN locations is a viable solution to SBN reduction. 

Caterpillar provided funding to Michigan Tech to develop a test bench to measure 

and evaluate hose clip locations on simple hydraulic circuits. The results and developed 

test methods gained through this work will go towards updating design tools and guidelines 

for hydraulic line routing. The data sets collected on the test bench will be used for model 

validation and correlation efforts. The first phase of this project is focused on establishing 

test methods in a laboratory environment. The laboratory test bench will allow MTU to 

conduct future hydraulic noise research. 

1.2 Background 

Background information is provided on the primary noise mechanisms in the design 

of hydraulics for heavy equipment and the governing physics of hydraulic piping system 

fluid-structure interaction (FSI). Existing FSI test benches and test methods for hydraulic 

clipping point assessment are explored. 

1.2.1 Noise Mechanisms in Heavy Equipment Hydraulic Systems 

There are three noise mechanisms in hydraulic systems that can couple together to 

produce significant design challenges. These mechanisms are FBN, SBN, and ABN. 
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1.2.1.1 Fluid-borne Noise  

The fluid energy responsible for fluid-borne noise can be broken up into two source 

categories, pump pulsations, and valve noise. 

1.2.1.1.1 Pump Pulsations 

Real pumps generate an unsteady pressure and flow. In an axial piston pump, the 

incoming volume of fluid is divided and drawn into cylinders on the suction stroke and 

then pressurized and expelled on the delivery stroke. An ideal pump is timed so that the 

piston is over pressurized by 2% before being exposed to the discharge port. This ensures 

that there is no backflow into the cylinder before the targeted pressure is reached [3]. The 

timing of the fluid discharge is based on the location of the discharge port on the port plate. 

Perfect timing can only be achieved for a specific operating condition and therefore 

backflow occurs at all other working conditions. The backflow generated produces an 

oscillating flow pulsation on top of the mean flow referred to as ‘flow ripple’. Reflections 

of the flow ripple wave at any fluid obstruction produce pressure oscillations known as 

‘pressure ripple’. The flow and pressure ripple occur at harmonics of the product of the 

pump shaft frequency and the number of pistons in the pump. If the hydraulic system is 

linear then the pressure and flow ripple levels can be assumed directly proportional [4]. 

Examples of commercially available software for the analysis of FBN are PRASP and DSH 

plus [5, 6]. 

In the engineering of hydraulic pumps, port timing is the most effective pump 

design parameter to optimize for reduction of these ripples. The noise control components 

for FBN reduction once the pulsations enter into the hydraulic circuit can be reduced with 
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suppressors [7]. Tuning cables are a type of suppression device used in the automotive 

industry to reduce the amplitude of the pressure ripples [8]. This solution may not be 

effective in heavy equipment circuits due to the stiff hoses needed for the high-pressure 

requirements. One possible suppression type for these systems is gas loaded pass through 

filters [9]. These tube-in-tube systems are designed to suppress specific frequencies based 

on the tunable pressure of an enclosed gas. These suppressor systems add weight, cost, and 

require additional space in the design of the circuit. A review of hydraulic fluid-borne noise 

reduction methods has been developed by Kevin Edge through many years of significant 

contribution to hydraulic noise control at the University of Bath [4]. 

1.2.1.1.2 Valve Noise 

Additional noise generation mechanisms associated with the hydraulic fluid are 

cavitation, valve excitation, and waterhammer. These mechanisms are related to the 

interaction of the fluid and a control component. Cavitation is the implosion of small 

entrained air bubbles often produced at the pump. These air bubble implosions can create 

broadband FBN, unwanted growling ABN and cause reduced pump life [10]. 

Waterhammer is the hydraulic equivalent to a shock in structural dynamics. This type of 

excitation exists as a high-amplitude pressure wave in the fluid that can occur after a sudden 

valve closing. Valve excitation is the unstable oscillation of a valve internal components 

that typically produces a high-frequency tonal sound. This is a sound quality issue that may 

affect the customer’s perception of the machine. 
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1.2.1.2 Structure-borne Noise 

Oscillating internal forces and moments in the axial piston pump generate 

imbalances that transmit energy through the pumping cylinder connections and into the 

pump casing [11]. The forcing function for this excitation exists at pumping frequencies or 

larger broadband ranges in the case of impacts. Pump designers will often try to use less 

material in the pump casing to reduce weight and dissipate heat. This can increase the 

acoustic radiation efficiency of the casing. The pump casing vibration can transfer through 

the mounts or the outlet hose and excite resonances in the rest of the hydraulic circuit. 

Additionally, the FBN energy in the hose can excite hose resonances causing high vibration 

levels at any attached frame structure. Hydraulic circuit network SBN responses have been 

modeled with finite element methods [12]. Numerous experimental test methods have been 

developed and compared for experimentally determining SBN sound power at mounting 

points [13]. These methods use a combination of measured force and velocity to produce a 

transmitted SBN metric.  

1.2.1.3 Airborne Noise 

It is helpful to consider ABN in mobile heavy equipment hydraulic circuits with 

respect to the source-path-receiver paradigm. The pump is the noise generation source 

producing FBN, the FBN energy can transfer into the structure through multiple paths 

depending on the circuit layout. The receivers are the operators and bystanders. ABN issues 

can result if excited structures can efficiently transform vibrational energy into audible 

noise. If the audible hydraulic noise is tonal or has an excessive whine, the perceived 

quality of the machine could be affected. The audible noise levels from the hydraulic circuit 
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will add to the overall noise level of the machine which is strictly regulated in many 

countries that have high population densities [14]. According to some research, if audible 

noise levels exceed 85 dBA in the cab of the machine or in surrounding work areas, the 

health and safety of the operators and bystanders could be affected [1].  

Isolation of the pump and hoses from the frame members and supports is a commonly 

proposed solution. Isolation with rubber compounds can work well for a specific design 

frequency but may suffer in broad frequency range applications or in attenuating low-

frequency amplitudes. Noise issues can sometimes be reduced through design 

modifications such as mass and rigidity changes. Overall ABN sound levels will be 

measured using field tests during product development. Finite element and boundary 

element methods have been used successfully in combination to simulate SBN and FBN 

energy generating ABN and predicting the radiated sound field [15, 16]. 

1.2.2 Fluid-Structure Interaction 

The piping system fluid-structure interaction (FSI) research field is described through 

its origins, governing physics and mechanisms and then explored through existing 

experimental applications and model validation methods. 

1.2.2.1 Origins, Governing Physics, and Mechanisms 

Researchers have been devoted to understanding the FSI phenomena in piping 

systems since a foundational study in 1876 [17]. Early FSI studies specific to piping 

systems were aimed at understanding waterhammer shock excitation. This was followed 

by an increase in studies related to periodic fluid flow and pressure ripple excitation. The 
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study of FSI is important because the analysis of the fluid and structural responses 

independently may not accurately represent the behavior of the system as a whole. 

Incorrect representation of the governing physics could lead to poorly correlated results to 

validation experiments. Simply adding the fluid mass to the pipe wall does not work for all 

design cases [18]. In 1987, Wiggert et. al. published 14 governing differential equations to 

describe a 1-dimensional hydraulic piping system’s FSI [19]. Of the 14 equations, 12 of 

the equations represent the axial, torsional and flexural vibrations in the structure and 2 

equations represent flow and velocity in the fluid. The relative importance of each FSI 

model degree of freedom was determined experimentally by evaluating the transmitted 

power through a pipe for a given axial velocity, lateral velocity, bending angular velocity, 

torsional angular velocity and pressure input [20]. It was found that the most significant 

structural input to structural wave transmission through the hose wall is the hose axial 

force. Tijsseling and Wiggert provide a complete review of the development and 

applications of the flexible piping system FSI model until 2001 [21]. Li and Ferrás have 

extended this work to create single sources for a more current state-of-the-art [22, 23]. 

Fluid-structure interaction can be divided into three mechanisms: friction coupling, 

Poisson coupling, and junction coupling. Friction coupling comes from the shear stress at 

the interaction of the hose or pipe wall and the fluid. Poisson coupling comes from the 

radial deflection of the hose which causes a pressure wave to transmit axially through its 

length. The Poisson coupling mechanism occurs most efficiently when the breathing modes 

of the hose wall are excited. The junction coupling mechanism is often the biggest FSI 
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contributor and occurs at pipe bends and restrictions that produce unbalanced forces or 

sudden changes in the fluid momentum [24]. 

1.2.2.2 Existing Experimental Test Setups and Methods for Mount Assessment 

A 2015 review of FSI research in pipeline systems points out that less than 20% of 

their presented literature contained experimental validations [21]. The designs for existing 

experimental test setups are explored, followed by existing methods for hydraulic clipping 

point assessment. A detailed list of current laboratories with experimental piping system 

FSI setups is provided by Ferrás [20]. The development of a hydraulic circuit FSI test bench 

requires three primary design considerations: fluid excitation mechanism, boundary 

conditions, and measurement devices. 

1.2.2.2.1 Fluid Excitation Mechanism 

Validations focused on analyzing waterhammer shock waves commonly use solid 

rods or impact hammers to excite the fluid in a pipe system. For validation of hydraulic 

circuits with flow and pressure pulsations, a rotary valve is commonly used. This method 

provides precise control of the excitation frequency. In this configuration type, the mean 

fluid flow is provided by a hydraulic pump. A long length of hose or a suppression device 

attenuates the pump source ripples before a rotary valve reintroduces a target ripple level 

to the system. This type of excitation is shown in Figure 1 [25]. A real hydraulic pump 

system can also be used for analysis as shown in the setup in Figure 2 [26]. This ensures 

that all pumping dynamics are conserved. This type of system requires that the pump source 

flow ripple and source impedance are characterized by either the secondary source method 
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or two pressures/two systems method [27, 28]. A detailed comparison of the strengths and 

shortcomings of each method has been provided by the University of Bath where the 

secondary source method was developed [29]. 

 
Figure 1: Pipe Clamp Vibration Reduction Test Rig 

 
Figure 2: Pump Pressure Pulsations Test Rig 
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1.2.2.2.2 Boundary Conditions 

Understanding the boundary condition variables in an experimental test 

configuration requires a consideration of the rig shape and hose mounting types. 

Suspension systems for hoses and pipe mounting have been used to minimize the structural 

energy losses from the hydraulic systems [30]. Massive anchor blocks have been used at 

pipe ends or intermediate locations to dissipate vibrational energy into the ground [31]. 

Configurations with straight pipelines or hoses are common in wave transmission tests in 

order to minimize junction coupling variables. Single bend and U-bend configurations have 

been used successfully in correlation studies since high vibration amplitudes are generated 

at the elbows due to junction coupling [25]. Real aircraft systems with in situ boundary 

conditions have been studied successfully with consideration of FSI using experimental 

modal analysis [32].  

1.2.2.2.3 Measurement Transducers 

Typical transducers used for FSI model correlation are dynamic pressure 

transducers, accelerometers, and microphones. Intensity probes have been used for transfer 

path analysis of a simple gear pump – pipe – load valve system [33]. Force transducers and 

accelerometers were used together to successfully expand the transfer matrix of a hose 

using axial hose wall force and axial hose wall motion in addition to the fluid pressure and 

flow measurements [34]. The combination of a microphone and a modally dense metal 

plate was used as shown in Figure 1 to measure the SBN to ABN efficiency at a hydraulic 

clipping point [25]. 
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1.2.2.3 Existing Methods for Hydraulic Mount Assessment  

A reconfiguration of the hydraulic hose clipping points to reduce the transmission 

of FBN energy into the structure is the lowest weight and most cost-effective noise control 

solution because it does not add any additional components to the circuit. It also has no 

effect on hydraulic performance because it does not alter the fluid pressure or flow. 

Isolation can be an effective noise control solution for hose clip designs but it is most 

suitable for higher frequencies [35]. This approach is also used when designing mounts for 

the machine cabs [36]. The primary interest of this project, however, is the location of the 

hose attachment and not the attachment type or design. It has been shown using transfer 

matrix methods that periodically placed supports on hydraulic piping systems can reduce 

overall pipe vibration in certain frequency bands [37]. This was verified using a fluid-filled 

fixed-fixed pipe excited by an impact hammer with pipe clip response vibration levels 

measured with an accelerometer. Numerical modal analysis approaches have been used to 

validate predicted boundary conditions of intermediate supports on long hydraulic 

pipelines [31, 38]. Experimental modal analysis of an aircraft hydraulic system was used 

to evaluate the effect of hose curvature and friction on hose natural frequencies [32]. It is 

claimed that most of the vibrational energy in the aircraft piping system is lost through the 

first mount and that hose clip locations producing long segments will reduce hose natural 

frequencies to within normal pump operating ranges. Genetic algorithms have been used 

to determine the best and worst clipping point locations [25]. Significant improvements 

between best and worst clip location were only observed in the first harmonic and the 

reduced amplitudes occurred over wide frequency bands. The optimization results 

correlated with moving away from the pipe bends as expected based on junction coupling. 
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The optimization parameter used was the FRF between the predicted force at the mount 

and pressure ripple at the pump outlet. The test setup for this study is shown in Figure 1. 

An attempt at a simulation tool for the aircraft industry to optimize clipping points and 

suppressor locations was completed at the Hamburg University of Technology. The 14 FSI 

equations were added to FBN results from commercially available software.  The results 

were not strongly correlated to experimental validations, however, it is claimed that the 

solution could help minimize iterative test efforts to find the optimal clip locations [39]. 

1.3 Project Milestones and Scope 

1.3.1 Project Milestones 

The primary project milestones that will define the success of this project are as follows. 

1. A test bench is developed in Michigan Tech’s hydraulic laboratory that produces 

data that correlates to field data collected on a reference hydraulic circuit. 

2. The test bench pump source flow ripple is characterized using ISO 10767-1. 

3. Test methods are established to determine the fluid and line resonances. 

4. Test metrics are developed to evaluate SBN at mount clipping points and 

measurements show that optimal hose clip placement can be a viable solution to 

SBN reduction. 

5. A predictive power flow approach is developed that quantifies the fluidborne 

energy at any location in the pump outlet hose based on measurements and modal 

parameters. 
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1.3.2 Scope 

The results of this project will come from a generalized mobile equipment hydraulic 

circuit that will replicate hydraulic noise issues for a variety of line configurations. The 

resonances of the fluid, hydraulic line and attaching structures are all within the scope of 

this project. The hydraulic components used in the design of the hydraulic circuit-under-

test will include a pump, filter and loading valve with the focus being from the pump outlet 

to the first fluid restriction. All other hydraulic components are considered out of scope for 

this phase of the project. The structural parameters that will be considered controlled 

variables for the study of FBN to SBN transfer are the number of hose mounts, the location 

of hose mounts and bending in the hose. The ABN energy lost from the system is 

considered negligible for the energy balance techniques, however, ABN generated will be 

criteria used to evaluate the results generated from this project in future tests. The pump 

casing SBN is another known hydraulic noise contributor that is not within the scope of 

this project. It is assumed that the damping provided by the outlet hose will eliminate the 

SBN contribution to measured hose mount SBN.  
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2 Theory 
This section provides background on methods used to collect, analyze and interpret 

the test bench data. The theory is categorized by hydraulic system sizing for test bench 

development, structural dynamics characterization, and hydraulic energy characterization. 

2.1 Hydraulic System Sizing 

The correct sizing of a hydraulic system is important for maximized performance, 

long-term durability, and operator safety. The following empirical equations for flow rate, 

power, and torque are shown in equations 1-3 respectively and are used for sizing the 

hydraulic pump and motor to circuit design parameters. 

𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺 =
𝜔𝜔𝑅𝑅𝐺𝐺𝐺𝐺 ∙ 𝑉𝑉𝑖𝑖𝑛𝑛3

231
 

 
(1) 

𝑃𝑃𝐻𝐻𝐺𝐺 =
𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

1714 ∙ 𝜂𝜂
 (2) 

𝑇𝑇 =
𝑃𝑃𝑝𝑝𝑝𝑝𝑖𝑖 ∙ 𝑉𝑉𝑖𝑖𝑛𝑛3

2𝜋𝜋
=
𝑃𝑃𝐻𝐻𝐺𝐺 ∙ 63025

𝜔𝜔𝑅𝑅𝐺𝐺𝐺𝐺
 (3) 

The flow rate, 𝑄𝑄, rotational frequency, 𝜔𝜔, volume, 𝑉𝑉, power, 𝑃𝑃, pressure, 𝑝𝑝, mechanical 

efficiency, 𝜂𝜂, and torque, 𝑇𝑇 should be converted to the units denoted in the subscript of 

each variable. 

2.2 Structural Dynamics Characterization 

Analytical background to structural dynamics characterization is provided before 

describing alternative experimental techniques using measured and unmeasured force 

inputs. 
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2.2.1 Analytical Characterization Methods 

The simplest vibrating system can be described by the mass, stiffness, and damping 

of an SDOF system excited by a force, F. If the system is linear and time-invariant, the 

model can be expanded to multiple degrees of freedom through the use of symmetric 

matrices where the off-diagonal terms show the coupling of each DOF to another DOF. 

The system is defined by its equation of motion which is a second order linear differential 

equation with constant coefficients shown in the time domain in equation (4) and 

transformed to the frequency domain in equation (5). This equation describes the motion 

of the system in physical space where [𝑀𝑀] is the mass matrix, [𝐶𝐶] is the damping matrix 

and [𝐾𝐾] is the stiffness matrix. 

[𝑀𝑀]𝑥𝑥(𝑡𝑡)̈ + [𝐶𝐶]𝑥𝑥(𝑡𝑡)̇ + [𝐾𝐾]𝑥𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) (4) 

[𝑀𝑀]𝑥𝑥(𝜔𝜔)̈ + [𝐶𝐶]𝑥𝑥(𝜔𝜔)̇ + [𝐾𝐾]𝑥𝑥(𝜔𝜔) = 𝑓𝑓(𝜔𝜔) (5) 

The relationship between the displacement response and the forcing function is 

known as the system’s compliance FRF denoted 𝐻𝐻(𝜔𝜔). This is a slice of the system transfer 

function at 𝑗𝑗𝜔𝜔 and is shown diagrammatically in Figure 3 and formulated for each DOF in 

the FRF matrix shown in equation (6). The response of the structure can be characterized 

by its modes of vibration which depend on the systems mass, stiffness, damping and 

boundary conditions. The number of modes in the system is equal to the number of poles 

in the transfer function. There are an infinite number of modes in real systems, each of 

which can be described by a unique natural frequency, modal damping value and mode 
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shape. These modal parameters are independent of the forcing function acting on the 

system.  

 

Figure 3: Analytical Compliance Block Diagram 

[𝐻𝐻(𝜔𝜔)] = �−𝜔𝜔2[𝑀𝑀] + 𝑗𝑗𝜔𝜔[𝐶𝐶] + [𝐾𝐾]�
−1

 (6) 

Each FRF in the multiple DOF FRF matrix shown in equation (6) can also be 

expressed in partial fraction form shown in equation (7) where it is described by system 

poles,  𝜆𝜆𝑛𝑛,  and residues, 𝐴𝐴𝑛𝑛. The poles of the system are the roots of the denominator of 

the transfer function and the residues are the roots of the numerator. The poles are defined 

using damped natural frequency, 𝜔𝜔𝑑𝑑, and damping factor, 𝜎𝜎, as shown in equation (8). The 

residues are defined by the mode shape vector, {𝑣𝑣} and a participation scale factor, 𝑞𝑞𝑛𝑛,  

shown in equation (9). 

𝐻𝐻(𝜔𝜔) = �
𝐴𝐴𝑛𝑛(𝜔𝜔)
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑛𝑛

∞

𝑛𝑛=1

+
𝐴𝐴𝑛𝑛∗ (𝜔𝜔)
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑛𝑛∗

 (7) 

𝜆𝜆𝑛𝑛 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑 (8) 

𝐴𝐴𝑛𝑛 = 𝑞𝑞𝑛𝑛 ∙ {𝑣𝑣} ∙ {𝑣𝑣}𝑇𝑇 (9) 

In an analytical model, the systems mode shapes and natural frequencies can be 

found from the solution of the eigenvalue problem shown in equation (10) where the 
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resulting eigenvalue matrix, 𝜆𝜆, is a diagonal matrix of squared natural frequencies and the 

eigenvectors are a matrix of the associated mode shapes, [𝑈𝑈]. Solving the eigenvalue 

problem assumes that the stiffness and mass relationships of all DOF’s are known. It is 

typical in analytical models for the modal damping to be estimated or assumed negligible 

for mechanical systems. 

([𝐾𝐾]− 𝜆𝜆[𝑀𝑀]) ∙ 𝑋𝑋�(𝜔𝜔) =  0� (10) 

The physical space FRF shown in equation (6) can be transformed with the eigenvector 

matrix to modal space notation, 𝑞𝑞(𝜔𝜔), using equation (7). Modal space notation uncouples 

all DOFs to produce SDOF FRF’s for the contribution of each mode to the overall response 

of the system.  

[𝑈𝑈]𝑇𝑇[𝑀𝑀][𝑈𝑈]�̈�𝑞(𝜔𝜔) + [𝑈𝑈]𝑇𝑇[𝐶𝐶][𝑈𝑈]�̇�𝑞(𝜔𝜔) + [𝑈𝑈]𝑇𝑇[𝐾𝐾][𝑈𝑈]𝑞𝑞(𝜔𝜔) = [𝑈𝑈]𝑇𝑇𝐹𝐹(𝜔𝜔) (11) 

Both the modal space representation and the pole-residue form of the FRF explicitly show 

that the overall response of any DOF can be described by the sum of the response of each 

mode. This is known as modal superposition. In real systems, the mass, stiffness and 

damping relationships between each DOF cannot be measured for the above analytical 

methods to be applied. Experimental techniques to extract modal parameters from 

measured data must be used. 

2.2.2 Experimental Characterization Methods with Measured Inputs 

Moving from an analytical to signal processing notation, the FRF in Figure 3 can be 

represented where 𝐹𝐹(𝜔𝜔) is the measured input spectrum and 𝑥𝑥(𝜔𝜔) is the measured output 
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spectrum. In the case of real measurements, there will be noise on both the output and input 

channels. The data is often collected in the time domain and transformed to the frequency 

domain using an FFT. The H1 formulation shown in equation (12) uses the crosspower 

between the input and output signals, 𝐺𝐺𝑥𝑥𝑥𝑥(𝑗𝑗𝜔𝜔) in the numerator and the autopower of the 

input, 𝐺𝐺𝑥𝑥𝑥𝑥(𝑗𝑗𝜔𝜔) in the denominator. The * denotes the complex conjugate of the measured 

spectrum. This FRF formulation minimizes all signal content in the output signal that is 

uncorrelated with the input signal.  

𝐻𝐻1(𝑗𝑗𝜔𝜔) =  
𝑥𝑥(𝑗𝑗𝜔𝜔) ∙ 𝐹𝐹∗(𝑗𝑗𝜔𝜔) 

𝐹𝐹(𝑗𝑗𝜔𝜔) ∙ 𝐹𝐹∗(𝑗𝑗𝜔𝜔)
=
𝐺𝐺𝑥𝑥𝑥𝑥(𝑗𝑗𝜔𝜔)
𝐺𝐺𝑥𝑥𝑥𝑥(𝑗𝑗𝜔𝜔)

 (12) 

The output signal from any transducer on a structure is measuring the overall 

response of the system at a specific measurement location to the given excitation input. 

The response can be measured throughout a spatial domain to produce a shape known as 

an operational deflection shape (ODS). It is assumed that if modal density is low and the 

forcing frequency of the input signal is at or near a mode of the system, the ODS will be 

dominated by the shape of the excited mode. It is not possible to extract modal parameters 

from ODS but it can be done through an established test method known as experimental 

modal analysis (EMA).  

EMA requires that the structure being analyzed is linear and time-invariant. A mode 

must be excited by the input forcing function to be evaluated using EMA. It is typical to 

use an impact hammer to produce an impulse response or a shaker with a white noise 

spectrum to excite a broad frequency range. In both cases, the input signal and response 

signal are measured and an FRF is produced using equation (12) and then curve fit to obtain 
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an estimate for the modal parameters of each mode. There are many methods for curve 

fitting a measured FRF. One such method for extracting natural frequency, damping and 

participation factor is the PolyMAX method [40]. In this method, poles are selected from 

a stabilization diagram which is created by evaluating the pole-residue form of the FRF in 

equation (7) with increasing model order. A stable pole is determined when model order 

no longer changes the estimated natural frequency and modal damping. The shape of the 

mode is extracted from the residues using least squares complex frequency domain (LCFD) 

method [41]. Since EMA is only evaluating a finite number of modes based on input 

excitation, the effect of modes outside of the frequency range of interest can be accounted 

for with upper and lower residuals where the lower residual is represented as a stiffness 

line and the upper residual is represented as a mass line. 

The estimated modal parameters can be validated by synthesizing the FRF using a 

finite number of modes, the upper residual, 𝑈𝑈𝑈𝑈, and the lower residual, 𝐿𝐿𝑈𝑈,  using equation 

(13).  If all modes that significantly contribute to the overall response at the DOF of interest 

are represented in the synthesis, the FRF will look identical to the measured DOF. The 

least squared error shown in equation (14) can be used to quantify the difference between 

the synthesized FRF, 𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ, and the measured FRF, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 . 

𝐻𝐻(𝜔𝜔) = 𝐿𝐿𝑈𝑈 + �
𝐴𝐴𝑛𝑛(𝜔𝜔)
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+
𝐴𝐴𝑛𝑛∗ (𝜔𝜔)
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑛𝑛∗

+ 𝑈𝑈𝑈𝑈 (13) 

𝐿𝐿𝑆𝑆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
∑(𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔) − 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔)) × (𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔) − 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔))∗

∑(𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔) − 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔))
 (14) 
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All mode shapes that describe a system are unique. The modal assurance criterion 

(MAC) shown in equation (15) is used to determine the relationship between any two 

extracted mode shapes, 𝑛𝑛 and 𝑚𝑚, and quantify similarity. 

𝑀𝑀𝐴𝐴𝐶𝐶(𝑛𝑛,𝑚𝑚) =
|{𝑣𝑣𝑛𝑛}𝑇𝑇{𝑣𝑣𝑚𝑚}∗|2

({𝑣𝑣𝑛𝑛}𝑇𝑇{𝑣𝑣𝑛𝑛}∗) ∙ ({𝑣𝑣𝑚𝑚}𝑇𝑇{𝑣𝑣𝑚𝑚}∗) (15) 

Methods based on MAC have been developed to analyze the similarity between two FRFs 

without the need for a complete set of EMA data [42]. The cross signature assurance 

criterion (CSAC) shown in equation (16) quantifies the shape differences of two FRFs and 

an FRF scaling factor (FRFSF) shown in equation (17) compares the amplitude differences. 

𝐶𝐶𝑆𝑆𝐴𝐴𝐶𝐶 =
��𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔)�

𝑇𝑇{𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔)}∗�
2

��𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔)�
𝑇𝑇
�𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔)�

∗
� ∙ ({𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔)}𝑇𝑇{𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔)}∗)

 (16) 

𝐹𝐹𝑈𝑈𝐹𝐹𝑆𝑆𝐹𝐹 =  
∑ |𝐻𝐻𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠ℎ(𝜔𝜔𝐿𝐿)|𝐿𝐿
𝑖𝑖=1

∑ |𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝜔𝜔𝐿𝐿)|𝐿𝐿
𝑖𝑖=1

 (17) 

Techniques have been developed for taking modal parameters from an EMA and 

expanding the information to analytical DOF [43]. These expansion processes require a 

transformation matrix to relate each measured DOF to an analytical DOF.  In the case of 

the system equivalent reduction expansion process (SEREP), the transformation matrix, 

[𝑇𝑇𝑢𝑢], is the product of the mode shapes for all DOF’s, [𝑈𝑈𝑛𝑛], and the generalized inverse of 

only the measured DOF shape vectors, [𝑈𝑈𝑚𝑚], as shown in equation (18). The SEREP 

expansion can then be performed for all DOF’s, {𝑥𝑥𝑛𝑛}, using equation (19). 
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[𝑇𝑇𝑢𝑢] = [𝑈𝑈𝑛𝑛][𝑈𝑈𝑚𝑚]𝑔𝑔 (18) 

{𝑥𝑥𝑛𝑛} = �
{𝑥𝑥𝑚𝑚}
{𝑥𝑥𝑑𝑑}� = [𝑇𝑇𝑢𝑢] ∙ {𝑥𝑥𝑚𝑚} (19) 

2.2.3 Experimental Characterization Methods with Unmeasured Inputs 

A subset of EMA known as operational modal analysis (OMA) has been developed 

to be applied to systems where measuring the input force is not possible or practical [44].  

OMA uses measured responses from ODS data to estimate modal parameters with 

modified EMA curve fitting techniques. The assumption of a linear time-invariant system 

and broadband excitation over the entire frequency range of interest should still be valid. 

Instead of participation factors, complex reference factors are used to represent modal 

contribution. 

A unique challenge in OMA arises for the case of rotating machinery. The 

fundamental excitation frequency for components kinematically connected to a rotating 

shaft is known as an order. The frequency of an order can be determined using equation 

(20). Stationary rotating operating conditions will excite orders with frequencies that are 

deterministic and typical operation conditions produce time-varying excitation frequencies 

which negates the necessary assumptions for modal analysis to be performed. In addition, 

OMA techniques with rotating components can produce false peaks at the end of orders 

that do not relate to the system’s dynamics. An experimental method that combines the 

tracking of orders and OMA known as order-based modal analysis (OBMA) has been 

developed to solve these problems [45]. 
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𝑓𝑓𝑒𝑒 =
𝜔𝜔𝑅𝑅𝐺𝐺𝐺𝐺

60
∙ 𝐸𝐸𝑣𝑣𝐸𝐸𝑛𝑛𝑡𝑡𝐸𝐸 𝑝𝑝𝐸𝐸𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐸𝐸 (20) 

The tracking of orders allows for analyzing the contribution of a subcomponent to 

the overall measured vibration level. The simplest order tracking method is known as FFT 

order tracking. In this method, a vibration response time history and pulse train signal from 

a tachometer on a reference shaft are recorded simultaneously using a fixed sampling rate 

and block size. The reference shaft speed is extracted from the tachometer signal and a 

vibration response spectrum is generated using FFT. The frequency of the order is 

determined from the average operating speed during the measurement period and paired 

with the amplitude of the related frequency bins in the measured response spectrum. 

Integration over an order bandwidth (constant frequency or constant order) is desired to 

account for variations in order frequency over the measurement period. It is important that 

windows are used to minimize leakage since the frequency resolution is independent of the 

order frequency. Slow sweep rates will improve the accuracy of a tracked order since the 

amplitude of the order is an average over the measurement period. Advanced order tracking 

techniques have been developed to overcome the limitations due to fixed sampling rates 

[46]. 

Rotating component data is best visualized using colormaps made of incremental 

vibration response measurements over a speed sweep of the rotating reference shaft. In this 

display type, excited orders are easily identified by diagonal lines of high amplitude. The 

resonances in the system appear as vertical lines since their excitation frequency is 

independent of operating speed. Observing the speed sweep colormap will also help 
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determine what bandwidth type and size is necessary to capture all of the energy in the 

order. 

The foundational assumption of OBMA is that broadband excitation is achieved 

with run up or run down speed sweeps of the rotating reference shaft. The OBMA technique 

assumes that the input is a multiple sine sweep excitation defined by two correlated inputs 

of rotating shaft imbalance equal in amplitude having a 90° phase difference [45]. Each 

force input has a corresponding FRF for each order contributing. The output order, 𝑌𝑌(𝜔𝜔), 

is extracted from measured operational speed sweep response data using order tracking. 

Operational PolyMAX curve fitting techniques can be applied to the orders to estimate 

natural frequencies, modal damping and residuals and LCFD can be applied to get mode 

shapes and reference factors, < 𝑔𝑔𝑖𝑖 >  [45]. The extracted modal parameters from OBMA 

can be validated by order synthesis using each mode, N, and equation (21). The synthesized 

results can then be compared to the measured order sections [47]. 

𝑌𝑌(𝑗𝑗𝜔𝜔) = (𝑗𝑗𝜔𝜔)4 ∙ (�
{𝑣𝑣𝑖𝑖} ∙< 𝑔𝑔𝑖𝑖 >
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+
{𝑣𝑣𝑖𝑖}∗ ∙< 𝑔𝑔𝑖𝑖∗ >
𝑗𝑗𝜔𝜔 − 𝜆𝜆𝑖𝑖

+
1

(𝑗𝑗𝜔𝜔)2
∙ 𝐿𝐿𝑈𝑈 + 𝑈𝑈𝑈𝑈) (21) 

2.3 Hydraulic Energy Characterization 

It is hypothesized that the noise energy in a simple hydraulic circuit can be 

characterized using FBN and SBN sound power metrics and then predicted at downstream 

locations using a power flow approach known as energy balancing. The ABN contribution 

to the total hydraulic energy flow is assumed negligible. 
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2.3.1 Fluidborne Sound Power 

Fluid power available to do work in a hydraulic system is the product of the fluid 

mean pressure and mean flow. The power available to generate FBN in the system is the 

product of the dynamic elements of the flow and pressure signals. The total source FBN  

can be quantified using equation (22) which is the sum of the product of the source flow 

ripple, 𝑄𝑄𝑝𝑝.𝑖𝑖, and pump outlet pressure ripple, 𝑃𝑃𝑒𝑒𝑢𝑢𝑠𝑠𝑜𝑜𝑚𝑚𝑠𝑠 𝑖𝑖, evaluated at each pump order, 𝑖𝑖.  Any 

downstream mount location FBN can be estimated at location 𝑛𝑛 using equation (23) if the 

local pressure ripple, 𝑃𝑃𝑛𝑛 𝑖𝑖, is known. It is assumed that the flow ripple is uniform through 

the pump outlet hose to the first restriction since there is no change in cross-sectional area 

for significant reflections occur. 

𝐹𝐹𝐹𝐹𝑁𝑁𝑆𝑆𝑒𝑒𝑢𝑢𝑒𝑒𝑆𝑆𝑚𝑚 = �𝑄𝑄𝑝𝑝.𝑖𝑖 ∙ 𝑃𝑃𝑒𝑒𝑢𝑢𝑠𝑠𝑜𝑜𝑚𝑚𝑠𝑠 𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (22) 

𝐹𝐹𝐹𝐹𝑁𝑁𝑛𝑛 = �𝑄𝑄𝑝𝑝.𝑖𝑖 ∙ 𝑃𝑃𝑛𝑛 𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (23) 

The source flow ripple of a hydraulic piston pump can be measured using ISO 

10767-1 also known as the two pressures – two systems method [27]. This method requires 

a test setup with measurement of dynamic pressure at two locations separated by a 

reference pipe with two inline direct acting load valves downstream separated by an 

extension pipe. The maximum frequency of interest for the test setup is determined using 

equation (24) based on the hydraulic fluid speed of sound, 𝑐𝑐,  and the reference pipe length, 

𝐿𝐿𝑅𝑅. 
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𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 =
𝑐𝑐

2 ∙ 𝐿𝐿𝑅𝑅
∙ 75% (24) 

Two unique standing waves are generated in the pipe from two measurements using load 

valves at two different locations independently. The complex source flow ripple quantity 

can be determined using equation (25) by measuring the complex pressure ripple at both 

locations, 𝑃𝑃1 and 𝑃𝑃2,  in two measurements runs where ′ denotes the second measurement. 

The characteristic impedance, 𝑍𝑍𝑆𝑆, wave propagation coefficient, 𝛽𝛽, and unsteady viscous 

friction coefficient, 𝜉𝜉(𝜔𝜔), can be determined with equations (26), (27) and (28) respectively 

defined by mean system pressure, 𝑝𝑝, speed of sound, 𝑐𝑐, pipe radius, 𝑝𝑝𝑒𝑒 and dynamic 

viscosity, 𝑣𝑣.  The speed of sound of the hydraulic fluid is estimated using the bulk modulus, 

𝐹𝐹, and density of the hydraulic oil, 𝜌𝜌, shown in equation (29). 

𝑄𝑄𝑝𝑝.𝑖𝑖 = 𝑗𝑗
1
𝑍𝑍𝑆𝑆

𝑃𝑃1.𝑖𝑖𝑃𝑃2.𝑖𝑖
′ − 𝑃𝑃1.𝑖𝑖

′ 𝑃𝑃2.𝑖𝑖

(𝑃𝑃1.𝑖𝑖 − 𝑃𝑃1.𝑖𝑖
′ ) sin(𝛽𝛽𝐿𝐿𝑅𝑅) 

 

(25) 

𝑍𝑍𝑆𝑆 =  
𝑝𝑝 𝑐𝑐 𝜉𝜉(𝜔𝜔)
𝜋𝜋 𝑝𝑝𝑒𝑒2

 (26) 

𝛽𝛽 =  
 𝜉𝜉(𝜔𝜔) 𝜔𝜔

𝑐𝑐
 (27) 

𝜉𝜉(𝜔𝜔) = 1 +  �
𝑣𝑣

2𝑝𝑝𝑒𝑒2𝜔𝜔
− 𝑗𝑗 ��

𝑣𝑣
2𝑝𝑝𝑒𝑒2𝜔𝜔

+
𝑣𝑣
𝑝𝑝𝑒𝑒2𝜔𝜔

� (28) 

𝑐𝑐 =  �
𝐹𝐹
𝜌𝜌

 (29) 
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The distribution of FBN energy in the outlet hose can be observed with the fluid 

ODS at a given operating speed. The ODS shape is a superposition of the excited fluid and 

structural modes. The theoretical fluid mode frequencies of a straight pipe with open end 

– closed end boundary conditions can be predicted analytically as shown in equation (30) 

for each harmonic using the speed of sound of the fluid and the standing wave wavelength, 

𝜆𝜆. The analytical fluid mode shapes are sinusoids having integer increments of ¼ 

wavelength. 

𝑓𝑓𝑛𝑛 =  
𝑛𝑛 ∙ 𝑐𝑐
4 ∙ 𝜆𝜆

                        𝑛𝑛 = 1,2,3 … .𝑛𝑛  (30) 

2.3.2 Structureborne Power 

An SBN power metric using measured force, 𝐹𝐹, and velocity, 𝑣𝑣, at each pump order 

𝑖𝑖 was used to evaluate the SBN generated at the hydraulic circuit mounts. Evaluating SBN 

power with both force and velocity is preferred over using either parameter alone since the 

combination is robust against the effects of structural resonances. It is assumed that the 

force and velocity will change proportionally near resonances and produce a valid SBN 

power metric for all evaluated frequencies. It is assumed that the sum of the SBN power 

measured at each pump order produces an estimate for the total SBN power transmitted 

through a single mount at each operating speed as shown in equation (31). 

 

𝑆𝑆𝐹𝐹𝑁𝑁𝑛𝑛 = �𝐹𝐹𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (31) 
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2.3.3 Energy Balancing 

Energy balancing is a power flow approach for the assessment of the FBN and SBN 

power through the outlet line of a hydraulic circuit. Starting with the source FBN power 

metric and SBN power losses at the first mount established using equation (22) and (31) 

respectively, the local FBN at the location of the first and subsequent mounts can be 

predicted with equation (32) for each incremental mount location 𝑛𝑛.  

𝐹𝐹𝐹𝐹𝑁𝑁𝑛𝑛+1 =  𝐹𝐹𝐹𝐹𝑁𝑁𝑛𝑛 − 𝑆𝑆𝐹𝐹𝑁𝑁𝑛𝑛                   𝑛𝑛 = 0,1,2, …  𝑛𝑛 
 

(32) 

The ABN power losses will be significantly smaller than the FBN and SBN power and are 

therefore considered negligible for the balancing of energy. The energy balance results can 

be validated with the local FBN predictions at the mount using equation (23). 
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3 Test Bench Development 
A generalized hydraulic circuit test bench was developed at Michigan Tech for 

assessment of FBN and SBN energy transfer. The primary design considerations are 

discussed followed by component selection and setup, operation, safety, and correlation to 

the machine. 

3.1 Test Bench Design Considerations 

A hydraulic circuit that has SBN issues was used as a reference circuit for the 

development of the hydraulic noise test bench. Correcting the problems of this circuit is 

not the primary purpose of the test bench. The test bench will be used to understand the 

physics involved in the FSI of a working hydraulic fluid and the hose at hose clip locations. 

This knowledge can then be applied to all heavy equipment hydraulic systems. A rotary 

valve circuit as discussed in 1.2.2.2.1 was explored, but a valve capable of meeting the 

reference circuit pressures was cost prohibitive. The prime mover is intentionally oversized 

to allow for future expansion of the current research to larger circuits with minimal 

component changes required. Components were selected to meet the following design 

objectives. 

• Replicate the dynamics of the reference hydraulic circuit. 

• Easily reconfigurable hose routing. 

• Remote control of system pressure and motor speed. 

• Safe and repeatable operation. 
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3.2 Test Bench Component Selection and Setup 

The test bench components were selected to simulate the reference hydraulic circuit 

as well as follow general hydraulic circuit design guidelines for performance and safety. A 

comparison of the reference hydraulic circuit requirements and the capability of the test 

bench are shown in Table 1. The selection of the pump, motor, hose routing fixtures, 

hydraulic oil and reservoir, and end-of-line components are discussed in detail. The 

complete component list for the test bench is shown in appendix A.   

Table 1: Hydraulic Circuit Requirements 

 
Motor 
Speed 
[RPM] 

Flow 
[GPM] 

Power 
[HP] 

Torque 
[Ft-Lb] 

Reference Hydraulic Circuit  
Requirements 800-2340 17.3 25.7 74.9 @ 1800 RPM 

Test Bench Capability 0-2700 17.3 100 295 @ 1800 RPM 

3.2.1 Hydraulic Pump 

The pump used in the reference hydraulic circuit is a 28cc variable axial piston 

pump with a nominal pressure of 3626 psi and a maximum pressure of 4569 psi. The 

tapered shaft on this pump made it difficult to find a suitable low-cost pump shaft coupling. 

A different 28cc pump with a straight shaft from the same Bosch Rexroth product line was 

selected to mitigate this issue. The maximum cutoff pressure for the test bench pump is 

2320 psi whereas the reference hydraulic circuit pump has a cutoff pressure of 3263 psi. 

The outlet and suction port diameters are identical for both circuits being ¾ inches and 1 

¼ inch respectively. The rated speed for the test bench pump is 2100 RPM. This means 
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that overspeeding the pump is required to meet the reference hydraulic circuit maximum 

speed range. It was determined that this is acceptable due to the short running durations 

needed for data collection. Using equation (1), the test bench pump maximum flow rate 

meets the requirements of the fan-brake circuit. 

The test bench pump was mounted to a 1-inch thick steel fixture and bolted directly 

to the lab bedplate as shown in Figure 4. A driving point FRF at the corner of the pump 

mounting fixture was measured during a pre-test analysis to document resonances and is 

shown in Appendix B.4. The test bench pump was broken in using break-in procedures 

found in Appendix C.2. 

 
Figure 4: Hydraulic Test Bench Pump and Motor 

3.2.2 Motor Selection and Setup 

Based on equation (2) and (3) and the pump flow and rated speed parameters, there 

were two 3-phase electric motor choices, 25 HP or 100 HP, available at MTU that could 

be used for the test bench. The 25 HP motor had an 1800 RPM rated maximum speed 

which would have limited the pumping frequency range of interest. The 100 HP motor was 
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chosen since it exceeded the minimum requirements. The motor was mounted on rubber 

pads to protect the motor and minimize the vibration transmission path from the motor feet 

to the hose mounts. This was tested in a pre-test analysis by sweeping the motor speed from 

0 RPM to 1800 RPM and measuring the acceleration response at the base of the hose mount 

and at the hose clipping point. It was determined that there was no significant vibration 

contribution to the hose mount from the motor through the floor at these operating 

conditions. The results are shown in Appendix B.3. The motor is shown in Figure 4 and is 

controlled by an ABS ACS550 drive unit. The selected drive unit allows for direct control 

the motor speed using a remote. The motor and pump were assembled carefully using feeler 

gauges to minimize misalignment. An elastomeric spider was placed in between the pump-

side and motor-side couplers to minimize torsional vibration. 

3.2.3 Circuit Hoses and Routing 

Easily reconfigurable and in-plane with the outlet of the pump were the primary 

component selection criteria for hose mounting. This was achieved by modifying massive 

jack stands as shown in Figure 5. A 5-inch length of 2-inch steel square stock was used as 

a spacer that was connected through the jack stand to a T-nut in the bed plate with ¾ inch 

threaded rod. A hose can be mounted anywhere where there is a bedplate slot which allows 

for ease and efficiency in testing multiple circuit configurations. The hose clip was attached 

to the top of the spacer block with M8 bolts with the additional stack height of a dynamic 

force transducer. The final mount height is in-plane with the outlet of the pump. There are 

4 different jack stands denoted A-D available for circuit routing. Driving point FRF’s of 

jack stand A-D was performed to document fixture resonances that may be present in data 
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collected from future tests. The results of this test are found in Appendix B.1. The 

reproducibility of the jack stand setups was analyzed in Appendix B.2. 

A 2.13-meter length of SAE 100R16-10 (5/8-inch ID) was chosen for the first 

circuit configuration used on the test bench circuit to match the reference hydraulic circuit. 

The same hose clips used on the machine were used to attach the hoses to the fixtures. M8 

bolts instead of the M10 were required to attach the hose clips due to the limitations of the 

through-hole in the dynamic force transducers. 

 
Figure 5: Hydraulic Hose Mount (Left) and End-of-Line System (Right) 

3.2.4 Hydraulic Oil and Reservoir 

The reference hydraulic circuit uses a 10W oil with a viscosity of 39.8 cSt at 40°C 

and between 6.0 and 7.0 cSt at 100°C. Chevron – Rando HDZ 32 was selected for use with 

the test bench circuit since it can be purchased locally through MTU facilities. This oil has 

a viscosity of 32 cSt at 40°C and 6.2 cSt at 100°C. The density of this oil is 0.8433 g/cc 

and the adiabatic bulk modulus is 285,000 psi. 
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A 25-gallon reservoir was selected based on the 3x capacity of the circuit rule-of-

thumb. All data collection was started at 50°C oil temperature measured by a Type K 

thermocouple at the end of the suction line. It is important the oil in the circuit does not 

heat too rapidly or take too long to reach temperature. A temperature test was performed 

during pre-test check-out runs. It was found that it took 20 minutes to reach 50°C at 750 

psi and 5 minutes at 1500 psi with 18-gallon tank capacity. 

3.2.5 End-of-Line System 

The end-of-line system shown in Figure 5 provides the hydraulic load for the test 

bench.  The fluid goes through a high-pressure filter, loading valve and a variable-area type 

flow meter before returning to the reservoir in an SAE 100R3-16 hose. A short section of 

SAE 100R16-12 hose connects the filter to the loading valve. The loading valve is a 3-port 

proportional pressure relief valve where the through-port is blocked allowing for variable 

control of the system pressure and flow remotely with control of the solenoid. The loading 

valve can achieve maximum pressure and flow rates of 5076 psi and 23.7 GPM 

respectively. A length of schedule 40 pipe connects the outlet of the load valve to the flow 

meter to steady the fluid before flow measurement. The flow meter is used as a reference 

transducer to monitor the system’s operating conditions. A loading valve drain hose back 

to the reservoir was required. 

3.3 Test Bench Safety 

The safety of the test bench was addressed by enclosing all rotating machinery and 

ensuring the pressure ratings of all hydraulic components used in the working line exceed 
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the rated cutoff pressure (2320 psi) of the selected pump. The pump is designed to destroke 

if the pressure demand exceeds the set cutoff pressure. Emergency stops for the motor and 

load valve were installed for use should the test bench operator require rapid shutdown or 

need immediate pressure relief. A spill kit capable of absorbing the complete tank capacity 

is available in the lab. 

3.4 Test Bench Operation 

The test bench operating conditions were monitored using three transducers and 

wired as shown in Figure 6. A laser tachometer was directed at the motor shaft with 1 

pip/rev. The static pressure transducer was threaded into a spacer block at the outlet of the 

pump to monitor mean system pressure. The flow meter was used as a reference check for 

motor speed and target system performance. The complete wiring diagram to provide 

power to the load valve and operating condition transducers is found in Appendix A.3. 

 

Figure 6: Test Bench Operation and Control 

 The test bench motor speed was controlled manually with a remote wired to the 

motor drive unit. The system mean pressure was controlled by a potentiometer on the load 

valve control remote as shown in Figure 6. A data collection run requires simultaneous use 

of both remotes to achieve desired system conditions. The data collected in this project was 
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constant pressure motor speed sweeps (CPSS) and steady-state (SS) runs which were easily 

obtained with this control configuration. All data sets were collected with a starting inlet 

oil temperature of 50°C. The startup guidelines can be found in Appendix C.1. 

3.5 Hydraulic Noise Test Bench and Machine Correlation 

The final assembly of the hydraulic noise test bench is shown schematically in 

Figure 7. The primary components are shown in Table 2. The complete component list can 

be found in Appendix A. The pressure ripple levels were measured at the outlet of the 

pump, inlet of the filter and outlet of the filter for a given SS run condition. A comparison 

of the test bench measurements and the reference hydraulic circuit field measurements at 

this condition is shown in Table 3. The correlation is acceptable and provides confidence 

that the test bench data collected throughout the project will be applicable to mobile heavy 

equipment field measurements. 

 
Figure 7: Reconfigurable Michigan Tech Hydraulic Test Bench Schematic 

 



www.manaraa.com

37 

Table 2: Primary Test Bench Components and Instrumentation 

 

 
Table 3: Pressure Ripple Level Comparison between the Reference Hydraulic Circuit and 
MTU Test Bench 
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4 Source FBN Characterization 
Characterization of the source FBN requires measurement of the outlet pressure 

ripple and pump source flow ripple. The pump source flow ripple was measured using ISO 

10767-1 test procedures. The test bench configuration, data collection, and results are 

discussed in detail. 

4.1 Test Bench Configuration 

The hydraulic noise test bench was configured as shown schematically in Figure 8 

with the primary components and instrumentation shown in Table 2. The complete test 

bench setup in the lab is shown in Figure 9. Three ¾ inch schedule 80 pipes were used to 

create the test section. This pipe diameter matches the size of the outlet port of the pump 

and has a working pressure rating of 3500 psi which exceeds the 2320 psi rated pressure 

of the test pump. A direct acting pressure relief valve set above the maximum desired test 

pressures was included in the test section as specified in the standard for added safety. 

 

Figure 8: ISO 10767-1 Test Bench Schematic 
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Table 4: Primary Components and Instrumentation for Source Flow Ripple Testing 

 

 
Figure 9: ISO 10767-1 Test Bench Setup 

Using equation (24) and a reference length of 0.137 meters, the maximum frequency of 

interest was determined to be 4,182 Hz. The ISO standard was used as a guide and not 

strictly followed due to budget limitations. Deviation in setup from the standard’s 

configuration was not expected to alter the flow ripple results. There was no back pressure 
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relief valve or oil cooler used and the flow meter was of a variable-area type and not a 

positive-displacement type. 

4.2 Data Collection and Procedures 

The ISO 10767-1 test section is shown in Figure 10. Data was collected using 

dynamic pressure transducers (PCB 113B22) from two pressure transducer locations, 𝑃𝑃1 

and 𝑃𝑃2. This was done for two system conditions with identical operating conditions in 

separate measurement runs. System 1 is defined by LV2 being fully open and LV1 set to a 

desired system operating condition. System 2 is defined by 𝐿𝐿𝑉𝑉1 being fully open and 𝐿𝐿𝑉𝑉2 

set to the same system operating condition. Same operating conditions are defined by 

identical motor speed sweeps, flows, mean pressure and oil temperature. Motor speed, flow 

and static pressure data was recorded for both runs and inlet oil temperature was viewed 

on a digital display. All measurement runs began at an inlet oil temperature of 50°C. 

Pressure ripple data was collected at a sample rate of 10,240 Hz as recommended by the 

standard to observe the first 10 harmonics. Data was collected in 0.8s measurement periods 

for a CPSS. A hanning window was used to minimize leakage error. The direct acting load 

valves were controlled manually to maintain a constant pressure during motor speed run 

ups. This test procedure was performed for system 1 and system 2 at 1000 psi, 1500 psi 

and 2000 psi as well as a replicated load curve from the reference hydraulic circuit. The 

replicated load curve was performed by setting the pressure at 800 RPM motor speed and 

letting the increased flow with a constant restriction drive the mean pressure. The measured 

replicated conditions correlated well with measured machine data. 
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Figure 10: ISO 10767-1 Test Section 

4.3 Source FBN Results 

An example of a colormap and extracted pump order sections from the 𝑃𝑃1 pressure 

measurement is shown in Figure 11. It is observed that most of the energy is in the 9th, 18th, 

27th, 36th and 45th orders. 9th order is the fundamental pump order since there are 9 pistons 

in the test bench pump. Order sections were extracted from the colormaps using FFT based 

order tracking. A ½ order bandwidth was considered acceptable since there are no closely 

spaced or crossing orders. The order cuts show that nearly all of the energy contributing to 

the overall level is in the 9th order. There is also energy in 1st order caused by motor shaft 

imbalance. It is determined that capturing all of the energy in the system can be 

accomplished by analyzing the first 5 pump orders. 
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Figure 11: 𝑃𝑃1 Colormap and Order Sections from System1 - 1500 psi CPSS 

Using equations (25)-(29) the source flow ripple was determined for all CPSS. An 

example of the 1500 psi CPSS results for the first 5 pump orders is shown in Figure 12. 

Significant variation was observed in the raw flow ripple results output. The results were 

smoothed using a 7-point moving average filter. Large flow ripple spikes were also 

observed and linked to the subtraction of complex pressure ripple measurements. Flow 

ripple spike occurrence could not be correlated to observed differences in operating 

conditions. It is supposed that there are small system nonlinearities affecting the phase of 

the measured dynamic pressures and not the dynamic pressure magnitude. A detailed 

explanation into the observed anomalies can be found in Appendix D. The occurrence of 

spikes in the flow ripple results was mitigated by decreasing the frequency resolution to 

0.5 Hz or 0.25 Hz. Since the total sweep time was typically 4 minutes and 40 seconds, a 

measurement period of 2 or 4 seconds is still acceptable for FFT based order tracking 

methods. 
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Figure 12: 1500 psi CPSS Source Flow Ripple Results 

Pump orders were used to compare lab and reference hydraulic circuit results. The 

processed single-spectra source flow ripple from test bench data are shown in Figure 13. 

 
Figure 13: Single-Spectrum Source Flow Ripple Processing 

It was found that the source flow ripple results correlate well with the reference 

hydraulic circuit data below 1000 Hz. The pumps used for comparison are not identical 

which could be cause for some of the deviation. It is supposed that the dissimilarities 

could be due to slight differences in operating conditions between the system 1 and 

system 2 measurements or errors in the speed of sound estimates. 
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5 Operational Deflection and Mode Shapes 
Data sets for a straight 2.23-meter hose configuration were collected and processed 

to observe the structure and fluid ODS and mode shapes.  

5.1 Test Bench Configuration 

The test bench was configured as shown schematically in Figure 14 using the 

primary components and instrumentation shown in Table 2. The complete test bench setup 

in the lab is shown in Figure 15. Hoses denoted A, B, and C of length 486 mm, 667.5 mm 

and 892 mm respectively were connected in 4 setups. Pressure ripple was measured 

through the hose adapters to get 8 unique measurement locations. The hose lengths were 

specified so that measured pressure locations were not at integer multiples and it could be 

ensured that measurements were not made at the same point on the fluid wave in the hose. 

A single hose mount was placed at a point that could remain consistent with for all 

configurations.  

 
Figure 14: Fluid Pressure Characterization Schematic 
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Figure 15: Pressure Characterization A-B-C Configuration 

5.2 Data Collection Procedures 

Dynamic pressure data sets were collected at the 8 pressure measurement locations 

shown in Figure 16 using 1500 psi CPSS conditions. A sample rate of 10,240 Hz with 1 

second measurement periods was used. A Hanning window was applied to minimize 

leakage error. The 1500 psi CPSS was chosen as the best operating condition because the 

test bench was most stable and there was a low risk of sensor overloads due to transient 

events. The typical total speed sweep time was 4 minutes. 

Measured concurrently with pressure ripple ODS, 11 single-axis accelerometers 

were roved across the top of the hose structure collecting 57 ODS deflection measurement 

points as shown in Figure 16. The accelerometers were spaced uniformly across the length 

of the structure in each run to minimize mass loading effects. A reference accelerometer 

was placed on the hose near the first hose mount and kept constant for all CPSS 

measurements. Deflection data was also captured circumferentially around the hose as 

shown in Figure 16 to visualize the expansion of the hose. This was done with 
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accelerometers at 1079 mm and with dynamic strain gauges at 528 mm. Both 

measurements recorded radial motion effectively, however, concerns with the durability of 

the dynamic strain gages led to more confidence in the accelerometer methods. 

 
Figure 16: Vertical Deflection Measurements (Top-Left), 8 Pressure Ripple 

Measurements (Bottom-Left) and Circumferential Deflection Measurements (Right) 

5.3 Operational Deflection and Mode Shape Results 

The ODS of the fluid and the hose can be viewed in a combined and overlaid 

manner for any motor operating speed for a given excitation frequency. The FSI 

relationships between the fluid pressure and the hose can be observed for any order 

excitation. The 9th order excitation at 820 RPM is shown in Figure 17. The hose ODS along 

the hose length may be dominated by a structural mode at this frequency. 
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Figure 17: Combined Deflection Shape Analysis at 820 RPM 

The theoretical fluid modes in a cylindrical pipe can be determined using equation 

(30) assuming open end - closed end boundary conditions. It is assumed that the test bench 

hose system would have fluid modes similar to this analytical solution with a closed end 

condition at the pump and open end condition at the filter inlet. The fluid modes are integer 

multiples of a fundamental frequency and have sinusoidal shapes that are multiples of ¼ 

wavelength. OBMA was attempted without success to extract theses fluid modes. Similar 

shapes and frequencies to the analytical results were observed in the deflection shapes of 

the first three pump orders. It is assumed that excitation with significant energy at a 

frequency near the fluid mode produces an ODS dominated by that mode shape. The 

observed shapes are flipped about a midline through the center of the hose which means 

boundary conditions may not be completely understood. The first 6 fluid modes were found 

in the fluid ODS shapes as shown in Table 5 and Figure 18. There is not enough spatial 

resolution in the dynamic pressure measurements to extract mode shapes from the ODS 

above the 6th harmonic. 
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Table 5: Fluid Modes from Operating Deflection Shapes 

 

 

 
Figure 18: Fluid Mode Shapes from Operating Deflection Shapes 

The 9th order energy is the dominant contributor to the overall ripple energy in the 

fluid. Using equation (20) for the CPSS performed from 800 – 2340 RPM, the 9th order 

frequency range is 120 – 351 Hz. This means that fluid modes above the third harmonic 

are not excited by 9th order energy. Additionally, the first and second fluid modes 

theoretically do not have nodes in their shapes. Nodal locations are ideal locations for hose 

clips since they are locations of minimum FBN energy. The third harmonic was selected 

for closer analysis since it is excited by 9th order energy and has both a node and peak wave 

amplitude in its shape.  
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The third fluid mode dominating the ODS at 2300 RPM is shown in Figure 19. The 

9th order forcing frequency at 2300 RPM is 345 Hz which is near the predicted location of 

the third fluid mode. There is significantly less energy in the higher pump orders and there 

is no significant contribution from higher pump orders to the overall deflection shape. 

 
Figure 19: Order-Based Deflection Shapes at 2300 RPM 

The absolute magnitude of the pressure ODS for a 1500 psi CPSS is shown Figure 20 in 

three operation speed segments. It is observed that as motor speed approaches 2300 RPM 

the third fluid mode is amplified. There is an FBN minimum near 0.7 meters from the pump 

outlet and a maximum near 1.4 meters from the pump outlet. These are noted regions of 

high and low FBN energy. 
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Figure 20: Absolute Magnitude of Operating Deflection Shapes at A) 1600 - 2340 RPM, 

B) 1200-1600 RPM, C) 800-1200 RPM 
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6 Structureborne Noise Characterization 
An SBN metric was established using measured acceleration and dynamic force. 

Two hose configurations, a straight hose and a curved hose, were tested to determine the 

measured mount SBN level and compared it to the FBN level in the hose. It is predicted 

that regions within the hose with high FBN energy will have a higher SBN levels. This 

result will validate the prediction that hose clip placement is a viable solution to SBN 

reduction. The test bench configurations are described followed by data collection 

procedures and results. 

6.1 Test Bench Configurations 

A 2.13-meter hose that matches the combined total length of the hose segments 

used in the hydraulic pressure characterization tests was used for SBN characterization 

measurements. The test bench was configured for a straight and curved hose with the same 

hose mount locations. The test bench configuration is shown schematically in Figure 21 

and Figure 23 respectively. The primary components and instrumentation used are found 

in Table 2. The location of the hose mounts, denoted 𝐴𝐴 and 𝐹𝐹, match the pressure ripple 

measurements from the segmented hose at 710 mm and 1442 mm from the pump outlet. 

They are also near locations where there is an expected minimum and maximum FBN 

energy at 2300 RPM. The lab setup of the test bench for the curved and straight hose is 

shown in Figure 22 and Figure 24. The mounts were moved to locations 𝐴𝐴′ and 𝐹𝐹′ in a 

curved hose setup perturbation test to observe the effect of different mounting locations.  
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Figure 21: Straight Hose Configuration Schematic 

 
Figure 22: Straight Hose Configuration Setup 

 
Figure 23: Curved Hose Configuration Schematic 
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Figure 24: Curved Hose Configuration Setup A-B 

6.2 Data Collection Procedures 

A SBN metric was formulated using operational force and velocity measurements. 

This was done with the integrated tri-axial acceleration measured on the bolt head of the 

hose mount and the tri-axial dynamic force measurements using PCB 260A01 dynamic 

force transducers. Care was taken to assemble the hose mount with 28 N-m of torque using 

a digital torque wrench. This provides the 23 kN clamp load needed for an M8 bolt to 

achieve the calibrated sensor sensitivity. The hose end pressures were measured with PCB 

113B22 dynamic pressure transducers. The hose mount and hose end transducer setups are 

shown in Figure 25. 
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Figure 25: SBN metric data collection (Left) Pump Outlet Pressure Measurement (Right) 

Data was collected in 1000 psi, 1500 psi, and 2000 psi CPSS runs from 800 – 2340 RPM. 

SS runs at 800 RPM-580 psi, 1500 RPM – 1500 psi and 2300 RPM – 2300 psi were also 

collected. The 1500 psi CPSS results were analyzed since associated ODS data was 

available from previous characterization testing. Data sets were collected with a sample 

rate of 3200 Hz and 1 second measurement periods. A Hanning window was used to 

minimize leakage error. Total time for a complete CPSS was typically 4 minutes. 

A perturbation test was performed by moving hose mount 𝐴𝐴 0.28 meters closer to 

the pump outlet in the curved hose configuration. The perturbation amount was arbitrary, 

however, the mount was moved to a location where higher FBN energy in the hose was 

expected at 2300 RPM. Hose mount 𝐹𝐹 was not moved. The hose mount locations for the 

perturbation test are shown in Figure 26.  
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Figure 26: Perturbation Test 

6.3 Structureborne Noise Characterization Results 

The colormaps shown in Figure 27 show the cross-correlation between the 

measured dynamic force and pump outlet pressure and the measured acceleration and the 

pump outlet pressure. The colormaps show that apart from a few fixture resonances near 

800 Hz and 1200 Hz documented in Appendix B, the significant energy in the measured 

force and acceleration spectrums occur predominantly in the pumping frequencies. 

 
Figure 27: Crosspower of Dynamic Force Measurements and Pump Outlet Pressure Ripple 
(Top) Crosspower of Velocity Measurements and Pump Outlet Pressure Ripple (Bottom) 

The results of the straight hose SBN characterization test using equation (31) is 

shown in Figure 28 in both a logarithmic and linear scale. It is observed from the SBN 
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curves that above 1600 RPM the measured SBN at mount B is significantly higher than the 

measured SBN at the mount A location. This observation follows the prediction of high 

FBN at mount B and low FBN at mount A at motor speeds where the third fluid mode is 

excited. It is assumed that the fluid modes are highly damped and the peak effects occur 

over a wide frequency range. A video analysis processing routine was developed to show 

the SBN metric overlaid on the hydraulic circuit image at all motor speeds. A snapshot of 

the video analysis at 2300 RPM is shown in Figure 29. The 2300 RPM ODS measurement 

was overlaid on the video frame to show the FBN and SBN relationship.  

 
Figure 28: Comparison of Straight Hose Mount A and Mount B SBN 
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Figure 29: Snapshot at 2300 RPM of Straight Hose Video SBN Analysis 

The SBN metric was evaluated and compared for multiple runs for the same circuit 

configuration. A comparison of two measurement runs is shown in Figure 30. The 

repeatability of the measurements is acceptable. 

 
Figure 30: Repeatability of SBN Measurements 

The results of the curved hose SBN characterization test using equation (31) is 

shown in Figure 31 and shows similar results compared to the straight hose test. Above 

1800 RPM, the measured SBN at the mount B location is significantly higher than the 

measured SBN at the mount A location.  
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Figure 31: Comparison of Curved Hose Mount A and Mount B SBN 

The results of the curved and straight hose characterization tests are shown in the 

same plot in Figure 32. A significant difference between the two tests was not observed for 

the data sets processed. It was expected that there would some SBN contribution at mount  

B for the curved configuration due to a junction coupling effect that would not be present 

in the straight hose data. The similar SBN curves for mount A and mount B are a single 

example of the reproducibility of the SBN measurement for a given mount configuration. 
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A controlled DOE to quantify the reproducibility and SBN curve contribution is 

recommended. 

 
Figure 32: Comparison of Straight Hose and Curved Hose SBN Results 

A perturbation test was designed where mount 𝐴𝐴 was moved closer to the pump to 

a location denoted 𝐴𝐴′. There was more FBN energy predicted at 𝐴𝐴′ using the fluid pressure 

ODS. Mount 𝐹𝐹 and Mount 𝐹𝐹′ remained in the same location for both measurements. It was 

predicted that the measured SBN would be higher for mount 𝐴𝐴′ at motor speeds where the 

third fluid mode is excited and that the Mount 𝐹𝐹 and 𝐹𝐹′ locations would be similar. The 

results of the perturbation test are shown in Figure 33 and match the pre-test predictions. 

More testing is necessary to determine whether the SBN minimum near 1850 RPM is real 

or an artifact of processing. The results of the perturbation test show that different hose 

mount configurations for the same hydraulic circuit produce different measured SBN 
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results. This shows that optimizing the placement of hose clips to a minimized SBN metric 

could be a viable solution to SBN problems for mobile heavy equipment hydraulic circuits. 

 
Figure 33: Curved Hose Perturbation Test Results 
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7 Energy Balancing 
Energy balance processing as described in section 2.3.3 requires source FBN 

power, mount FBN power and mount SBN power for all motor speeds being evaluated. 

The straight hose configuration data used in the SBN characterization tests were used to 

evaluate the method and no new data was collected. The source FBN power was 

determined with source flow ripple and measured outlet pressure ripple using equation 

(22). The SBN power was determined with measured mount force and velocity using 

equation (31). The mount FBN power according to equation (23) requires local flow ripple 

and local pressure ripple at each mount location. The flow ripple anywhere in the hose can 

be assumed equivalent to source flow ripple before the first fluid restriction. Determining 

the pressure ripple anywhere in the hose presents a significant measurement challenge. It 

is not possible to simultaneously measure pressure ripple and the SBN generated at a 

clipping point because intermediate hose pressure ripple measurements are collected 

through a drilled and tapped hole in a hydraulic hose adapter. This is shown in as shown in 

Figure 34. 

 
Figure 34: Intermediate Hose Pressure Ripple Measurements 

Two methods for generating an FRF were explored to predict hose mount pressure 

ripple levels based on pump outlet pressure ripple level. The first method generates FRF’s 
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for only the measured locations from the hydraulic pressure ODS tests. The second uses 

OBMA to extract modal parameters and expand the mode shapes to unmeasured locations. 

This expanded data is used to generate predictive FRF’s. Using the FRF’s from measured 

locations at mount A (710 mm) and Mount B (1442 mm) in the straight hose SBN 

characterization tests, the accuracy of the energy balance method described by equation 

(32) was evaluated. The energy balance results were compared with mount FBN 

predictions using equation (23). 

7.1 FRF based on Pressure Ripple Measurements 

FRF’s based on pressure ripple measurements uses the measured pressure data from 

the pressure ODS characterization tests described in chapter 5. The mounting locations 

available are limited by the spatial resolution of the ODS characterization tests. The FRF 

for each measurement location was determined using equation (12) and is shown 

diagrammatically in Figure 35. The FRF for the mount A location in chapter 6 is shown in 

Figure 36. The accuracy using each FRF to predict the measured pressure ripple at each 

potential hose mount location was tested using SS data recorded at 1500 RPM and 1500 

psi. The percent error between each FRF prediction and the pressure ripple measured for 

9th and 18th pump order is shown in Table 6. The accuracy of the pressure ripple predictions 
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appears acceptable although there are instances of significant deviation that would produce 

significant error in mount FBN predictions. 

 
Figure 35: FRF's from Measured Pressure Ripple Data Referencing Pump Outlet Pressure 

 

 
Figure 36: FRF from first 5 Pump Orders at Mount A (710 mm from Pump Outlet) 
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Table 6: Percent Error Predicting Downstream Pressure Using Measured Pressure FRF's 
and SS 1500 RPM - 1500 psi Data 

 

7.2 FRF based on Modal Parameters 

FRF based on modal parameters uses the measured pressure data from the pressure 

ODS characterization tests in chapter 5 and the OBMA techniques in section 2.2.3. Using 

the extracted order sections and LMS Test.Lab OBMA processing add-in, the frequencies 

and shapes from each selected stable pole can be determined from each order evaluated. 

The process for generating an FRF at an expanded location in the outlet hose was 

determined in the following steps. 

1. Organize the measured order sections for each measured location from each pump 

order of interest using the ODS characterization test data. 

2. Use LMS Test.Lab OBMA and the organized order sections to get the modal 

parameters (frequency, shape, damping, upper and lower residual, complex 

reference factor) for each pump order of interest. 

3. Interpolate the desired expanded location into mode shape vector ensuring the 

resulting shape is smooth. 
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4. Use SEREP techniques to generate a transformation matrix and expand the upper 

and lower residuals to include the new pressure location using equation (18) and 

equation (19) respectively. 

5. The order section can be synthesized using the expanded modal parameters with 

equation (21) and then used to produce FRF’s using the measured outlet pressure 

ripple order sections and equation (12). 

The accuracy of the method was tested by eliminating one DOF from the OBMA 

processing set and synthesizing order sections using modal parameters extracted from the 

remaining DOF (Synthesized 6DOF). This synthesized order section was compared against 

the measured order section. The best case result for the expanded synthesized order is the 

synthesized order from all DOF (Synthesized 7DOF). This is the accuracy limit based on 

the finite number of poles selected in the stabilization diagram. The accuracy can be 

quantified using the least-square error from the measured order evaluated shown in 

equation (14). The synthesized order section comparison for the mount A and mount B 

locations from the SBN characterization test is shown in Figure 37 and Figure 39 

respectively. The synthesized and measured order sections for all measured DOF’s can be 

found in Appendix E. A comparison of the least-square error between synthesized 6DOF 

and synthesized 7DOF for all measurement locations is shown in Table 7. The synthesized 

order section based on modal parameters appears to not work well for 2130 mm when 

extrapolation of the mode shape is required.  

The FRF’s generated using synthesized 6DOF order sections are compared with the 

FRF’s using measured order sections for mount A and mount B locations for 9th and 18th 
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order in Figure 38 and Figure 40 respectively. The synthesized and measured FRF’s for 9th 

and 18th orders for all measured DOF’s can be found in Appendix E. The FRF shapes can 

be quantitatively compared using CSAC and the FRF amplitudes can be compared using 

FRFSF. The comparison results are shown in Table 8. Increasing the spatial resolution of 

the ODS tests could improve the synthesized order section and produce FRF’s with a better 

correlation. 

 
Figure 37: Synthesized and Measured Comparison of 9th and 18th Order Sections at 

Mount A location (710 mm from Pump Outlet) for 9th Order (Top) and 18th Order 
(Bottom) 
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Figure 38: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Mount A Location (710 mm from Pump Outlet) 

 

 
Figure 39: Synthesized and Measured Comparison of 9th and 18th Order Sections at 

Mount B location (710 mm from Pump Outlet) for 9th Order (Top) and 18th Order 
(Bottom) 
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Figure 40: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Mount B Location (1442 mm from Pump Outlet) 

 
Table 7: Least Square Error of Synthesized Orders from Modal Parameters using 7DOF 
and All DOF 

 

 
Table 8: Comparison of Measured FRF to FRF from Extracted Modal Parameters using 
CMAC and FRFSF 
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7.3 Energy Balance Results 

The energy balance was quantified for straight hose configuration test data using 

equation (32) and the FRF’s from measured order sections. The noise metric power flow 

for the 2000 RPM condition is shown diagrammatically in Figure 41. The energy balancing 

for the entire motor speed sweep is shown in Figure 42 for mount A and in Figure 43 for 

mount B.  

 

Figure 41: Energy Balance Results at 2000 RPM for both Mounts in the Straight Hose 
Configuration 

 
Figure 42: Energy Balancing at Mount A 
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Figure 43: Energy Balancing at Mount B 

The expected balance of power through the outlet hose does not match with FBN 

predictions at each mount location. There may be unmeasured loss mechanisms or pressure 

ripple prediction methods are not accurate enough to validate the current formulation of 

the energy balance equation. Averaging measured FRF’s from multiple speed sweep data 

sets could improve measured FRF approach. Increasing the spatial resolution of the fluid 

characterization process could improve the pressure ripple FRF’s based on modal 

parameters. 
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8 Discussion 
This project has produced a test bench that replicates machine circuit FBN without 

the influence of other noise sources present in situ. The test bench design isolates the SBN 

analysis to primarily FBN and hose deflection contributions. Test procedures were 

developed to characterize the FBN and SBN for a simple hydraulic circuit using measured 

pressures in the hose and hose deflections both vertically and radially. It was found that the 

FBN at the hose clipping point is directly proportional to the SBN measured at the hose 

clip for a specific excitation condition. This was supported by a lower measurement of 

SBN at a hose clip placed at a perceived node in a fluid standing wave compared to a 

measurement at a location with higher FBN. This shows promise that the optimized 

placement of hose clips can be a viable solution to SBN reduction in heavy equipment 

circuits. 

The experimental test bench developed is unique from existing test rigs that use 

hydraulic circuits on compliant structures for FSI model validation [39]. The likelihood of 

errors due to base excitation of fixture resonances was significantly reduced by attaching 

the hoses as close as possible to the bedplate using the massive jack stands. Additionally, 

use of a real axial piston pump conserved the pumping dynamics and pump casing 

contributions.  

The observed direct FBN to SBN relationship occurred over a wider frequency 

range than expected and the shape of the pressure ODS in the hose was dominated by fluid 

modes excited primarily by first pump order energy. The broader range is believed to be a 

result of high modal damping that producing a wide peak in the FRF at the fluid resonance. 



www.manaraa.com

72 

The same broad frequency range result was observed in an experimental hose clip 

optimization study at the University of Bath [25]. SBN reductions were analyzed for each 

order in this study and not the sum of the orders. Differences between best and worst 

placement were only observed in the first pump order. The circuit that was used in the 

University of Bath experiments had a 90° bend and the optimal clip locations were assumed 

to be primarily based on the junction coupling effects at this elbow and not the fluid modes. 

Junction coupling does not appear to be a significant FSI contributor to SBN based on the 

lack of differences observed between the straight and curved configurations. It is expected 

that junction coupling SBN contribution is significant and that this could be proven and 

quantified with a controlled DOE using multiple hose lengths and mount configurations. 

Poisson coupling is the assumed dominant FSI mechanism for the straight hose 

configuration.  

An EMA performed on the hydraulic pipelines of an aircraft system quantified the 

curvature effect on natural frequencies of long aircraft hydraulic hoses. It was also 

concluded that long line lengths will reduce the hydraulic line resonances to within pump 

operating frequencies [32]. This result was observed and it is proposed as a general design 

guideline that long hose lengths that will excite higher order fluid modes with first pump 

order energy should be avoided. This aircraft hydraulic study also concluded that most 

SBN energy is lost through the first hose mount. This was not observed and it is thought 

that this result was primarily due to pump casing SBN being transmitted through rigidly 

attached pipelines. The pump casing SBN in this project is assumed to have been damped 

by the flexible hoses and the SBN measured is due to FBN and hydraulic line resonances. 



www.manaraa.com

73 

The observed errors in the balancing of transmitted FBN power may be associated 

with either unmeasured noise loss mechanisms or the pressure ripple prediction methods 

are inaccurate. It is assumed that the latter is more probable than the former. Averaging 

multiple formulated FRF’s for a given measurement location using the measured approach 

or a finer spatial resolution for the OBMA approach could improve the pressure ripple 

predictions. 

Additional hose clip configurations should be tested to validate the concluded FBN 

to SBN results. The small number of configurations tested limits the confidence in 

generalizing the conclusions of this project to all possible circuit designs. The results show 

promise that the test methods are able to quantify and rank various hose clip locations 

effectively. There was a tested configuration that did not match the concluded FBN to SBN 

relationship for a straight hose, but it is believed that this was due to an incorrect mount 

assembly. A closer analysis into measurement reproducibility by repeated mount 

assemblies for each configuration is recommended. 

A noted flaw in the study design is that the ODS shapes of the hose structure were 

not performed for the circuit used in the curved and straight hose SBN tests. It is expected 

that any reconfiguration of the hose mounts will alter the structural modal parameters of 

the hydraulic line. In future tests, the hose deflection should be characterized in the 

configuration used for mount SBN analysis. In this way, the contribution of hose deflection 

can be correctly evaluated as a contributor to the SBN measurement. It is also 

recommended that the hose deflection is measured using triaxial accelerometers for a more 

representative understanding. 
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Reproducing the observed FBN and SBN relationship at clipping points, improving 

energy balance results and assessing inaccessible clip locations is the recommended future 

direction for this project. The conclusions of the presented work can be validated using the 

same test procedures and a longer hose that will excite the fourth fluid mode with first 

pump order frequencies. It is expected that this will produce significantly different ODS 

shapes over the pump operating range for hose clip SBN evaluation. The optimal hose clip 

locations can be further evaluated by reintroducing the ABN mechanism to the scope. The 

SBN to ABN transfer could be measured with a microphone and a characterized plate 

beneath the hose clip. The locations can be ranked using radiated sound power or sound 

intensity. It is assumed that by improving the methods for predicted pressure ripple based 

on pump outlet pressure, the energy balance results will be improved. Averaging generated 

FRF’s or a finer spatial resolution for the modal superposition approach is recommended. 

A controlled DOE with the metrics and methods established in this project could be used 

iteratively to quantify the effect of attachment parameters. Estimating each term of the 

equation of motion of a hose using these predicted effects and hydraulic noise metrics could 

provide an SBN prediction at an inaccessible mount location. 

The test methods and conclusions that have been drawn from this research will be 

applied to planned continued hydraulic noise research at MTU. The procedures and metrics 

established will be expanded to more complex circuits by the systematic reintroduction of 

hydraulic components and variables until the complete reference hydraulic circuit is 

reproduced. The knowledge gained through this project will be used to update hydraulic 
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system design guidelines and best practices. The data sets will be used to correlate models 

for virtual development. 
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9 Conclusions 
The purpose of this project was to confirm that optimized placement of hose clips 

on a hydraulic hose is a viable solution to SBN reduction. This was accomplished by 

developing a set of test procedures and energy metrics for characterizing the hydraulic fluid 

and hydraulic line resonances and predicting local FBN to SBN transfer efficiencies. An 

attempt was made at balancing the FBN and SBN through the circuit using a power flow 

approach.  

Characterization of the hydraulic noise mechanisms using a typical EMA approach 

could not be used since it was not possible to isolate and measure the excitation input. 

Additionally, the measurements needed to be collected in a specific operational condition 

due to stiffness properties of the system being different for different fluid mean pressure 

levels. An attempt to characterize using OBMA, an OMA method designed specifically for 

rotating equipment, was not able to distinguish the theoretical fluid modes from interacting 

structural modes.  A finer spatial resolution may improve OBMA results in future tests. An 

ODS approach to identifying the frequency of the fluid modes was an acceptable 

alternative.   

The ODS approach relies on an assumption that the fluid mode shape dominates 

the ODS at pumping frequencies near the fluid natural frequencies. There were no curve 

fitting techniques used in this approach. An estimate for frequency and shape of the fluid 

modes were assumed by visual inspection of the ODS and knowledge of the theoretical 

shapes based on hose length, wave speed and assumptions of the hose end boundary 

conditions.  It was observed that the fluid modes excited by the energy in the first pump 
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order dominate the shape of the fluid ODS over the pump operating range. It was assumed 

that the structural mode contribution to the dynamic pressure ODS was negligible. 

The described ODS characterization procedure was able to identify the third fluid 

mode excited at 2300 RPM. The third fluid mode at this speed had a peak and node near 

1/3 and 2/3 of the total hose length from the pump outlet respectively. These locations were 

selected as optimal hose clip locations assuming an FBN minimum and FBN maximum. 

Two hydraulic circuits, a straight 2.13-meter hose and a curved 2.13-meter hose, were 

configured with mounts at these locations. The SBN was measured over a sweep of the 

pump operating range with a constant 1500 psi system pressure. Both circuit tests revealed 

a direct relationship between the FBN in the hose and the measured SBN at the hose clip 

when the third fluid mode was excited. Moving the hose clip away from the node toward a 

location of higher FBN produced higher SBN. This observation showed the test methods 

developed are capable of ranking SBN at hose clips and that hose clip placement can be a 

viable solution to SBN reduction. This was supported by a perturbation test. Validation of 

this result using identical methods with a variety of hydraulic circuits is recommended. 

The expected results of the power flow balancing approach were not achieved. It 

was theorized that the FBN power at any location in the outlet hose could be predicted by 

subtracting the SBN power at the hose mounts from the initial pump source FBN power. 

Two methods for determining the pressure ripple in the hose were developed since 

measuring mount location pressure ripple and mount SBN simultaneously was not 

possible.  
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It is expected that planned further investigations will increase the confidence level 

of the concluded FBN to SBN relationship that is currently limited by the small number of 

configurations tested. Additional experiments to quantify the SBN to ABN efficiency and 

junction coupling SBN contributions is recommended. This research has successfully 

provided a test bench, test framework and promising results for continued test-based 

hydraulic noise research at MTU. 
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A Hydraulic Test Bench Component List 
A.1 2.13-meter Hose Test Configuration 
Table 9: 2.13-Meter Hose Configuration Component List 

Component Part Number Description Manufacturer 
Power Unit 

Motor Drive Unit ACS550 Drive Unit ABB 
Electric Motor 405THFS8036 100 HP 3-Phase Marathon Motors 

Motor Side Coupling M70022824 2 7/8 – 3/4 keyed shaft Magnaloy 
Elastomeric Spider M770H5 -- Magnaloy 

Pump Side Coupling M700A1316 13T splined shaft Magnaloy 
Hydraulic Circuit 

Hydraulic Reservoir -- 25 Gallon Reservoir Buyers 
Reducer -- 1 1/4 - 2 NPTF Reducer -- 

Suction Hose -- SAE 100R6-20  

Gauge Port Block Main 2303-20-20 -20 C61   
gauge port block Main Mfg. 

Pump LA10VO28DR/52L-
VSC-11N00-S1608  28cc Axial Piston Pump Bosch Rexroth 

Case Drain Hose  716 -8 to -8 STOR  

Gauge Port Block Main 2303-12-12-M10 -12 C61 gauge port 
block Main Mfg. 

Adapter Main 1173-12-12-M10 -12 C61 to -12 STOR Main Mfg. 
Adapter -- -12 STOR to -10 ORFS  

Hose -- 2.13-meter SAE -10  
Adapter -- -10 ORFS to -12 STOR  

Filter  High Pressure Filter 3000 psi 
Adapter -- -12 STOR to -12 ORFS  

Hose -- 1 foot SAE 100R6-12  
Adapter Block 1173-12-12 12 STOR to -12 C61 Main Mfg. 

Load Valve R5V06-533-16-P2-
G0Q-A1 

3-port electric 
proportional pressure 

relief valve 
Parker 

Hose SAE -8 Hose Drain Line -- 
Adapter Block 1101-12-00 Block A Port Main Mfg 
Adapter Block 1149-12-12M10 Outlet Adapter Main Mfg. 
Sch. 40 Pipe -- 7.5 in -- 
Flow Meter FLMH-3420SS-MA 3/4"NPTF 20GPM Omega 
Sch. 40 Pipe -- 4 in -- 

Adapter -- ¾ NPT to SAE -16 -- 
Return Hose -- SAE 100R6-16  
Tee Adapter -- 1” X ¾” X ¾”  -- 

Instrumentation 
Tachometer -- Laser Type -- 

Thermocouple -- Type K Omega 
Digital Temp. Display -- Trendicator Omega 

Static Pressure  PX309-5KGV 5000 PSIG MV/V Omega 
Dynamic Pressure  113B22 ICP Piezo Transducer PCB 
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Flow Meter FLMH-3420SS-MA 3/4"NPTF 20GPM Omega 
Accelerometer  100 mv/g PCB 

Dynamic Force 260A01 2.5 mV/lb (X,Y)  
10 mV/lb (Z) PCB 

 

A.2 Source Flow Ripple Test Configuration 
Table 10: Source Flow Ripple Configuration Component List 

Component Part Number Description Manufacturer 
Power Unit 

Motor Drive Unit ACS550 Drive Unit ABB 
Electric Motor 405THFS8036 100 HP 3-Phase Marathon Motors 

Motor Side Coupling M70022824 2 7/8 – 3/4 keyed shaft Magnaloy 
Elastomeric Spider M770H5 -- Magnaloy 

Pump Side Coupling M700A1316 13T splined shaft Magnaloy 
Hydraulic Circuit 

Hydraulic Reservoir -- 25 Gallon Reservoir Buyers 
Reducer -- 1 1/4 - 2 NPTF Reducer -- 

Suction Hose -- SAE 100R6-20  

Gauge Port Block Main 2303-20-20 -20 C61   
gauge port block Main Mfg. 

Pump  28cc Axial Piston Pump Bosch Rexroth 
Case Drain Hose  716 -8 to -8 STOR  

Gauge Port Block Main 2303-12-12-M10 -12 C61 gauge port 
block Main Mfg. 

NPTF Block Main 1149-12-12M10 3/4 NPTF block Main Mfg. 
Sch. 80 Pipe -- 6 inch -- 

Pipe Coupling GG 3/4 GG NPTF Parker 
Sch. 80 Pipe -- 3 inch -- 

Cartridge Manifold CLD Through port with 
gauge port Sun Hydraulics 

Direct-Operated Relief 
Valve RDFALWN Direct-Operated Relief 

Valve Sun Hydraulics 

Pressure Relief Hose -- SAE 100R6-12  
Pipe Nipple -- 3/4 to 3/4 NPTF -- 

Load Valve 1 N1200S Direct Needle Type Parker 
Sch. 80 Pipe -- 3 inch -- 
Load Valve 2 N1200S Direct Needle Type Parker 
Sch. 40 Pipe -- 8 inch -- 
Flow Meter FLMH-3420SS-MA 3/4"NPTF 20GPM Omega 
Sch. 40 Pipe -- 6 inch -- 

Adapter -- ¾ NPT to SAE -16 -- 
Return Hose -- SAE 100R6-16  
Tee Adapter -- 1” X ¾” X ¾”  -- 

Instrumentation 
Tachometer -- Laser Type -- 

Thermocouple -- Type K Omega 
Digital Temp. Display -- Trendicator Omega 
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Static Pressure  PX309-5KGV 5000 PSIG MV/V Omega 
Dynamic Pressure  113B22 ICP Piezo Transducer PCB 

Flow Meter FLMH-3420SS-MA 3/4"NPTF 20GPM Omega 
Pressure Gauge -- Bourdon Type  

 

A.3 Test Bench Controller 
Table 11: Test Bench Control Component List 

Component Part Number Description Manufacturer 
Power Supply 

2mA Supply -- 2mA Supply -- 
+5V Supply -- +5V Supply -- 

+24V Supply -- +24V Supply -- 
Wiring Components 

Wire -- Wire Wire 
Valve Driver Board 027-22071-0 Valve Driver Board Parker 

Potentiometer RV4N103C-ND POT 10K OHM 2W 
CARBON LINEAR -- 

E-Stop 679-3757-ND SWITCH PUSH SPST-
NC 6A 240V -- 

Terminal Connectors WM5017-ND 
CONN JUMPER 
TERM EDGEON 

8POS 
-- 

Terminal Block WM5782-ND CONN BARRIER 
STRP 12CIRC 0.375" -- 

Plastic Box 377-1218-ND BOX ABS BLACK 
6.11"L X 4.61"W -- 

Knob 450-1735-ND 
KNOB FLUTED 
W/SKIRT 0.250" 

PLAST 
-- 

Plastic Box HM214-ND BOX ABS BLACK 
8.66"L X 4.33"W -- 

BNC Output WM5514-ND CONN BNC RCPT 
R/A 50 OHM PCB -- 

Cable Glands 377-2210-ND LNG GRY CABLE 
GLAND .16-.31" -- 
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B Pre-Test Analysis 
A pre-test fixture analysis was performed to understand and document the 

resonances that could appear in future tests. The 4 mounting posts, the motor-bedplate 

attachment, and the pump mounting fixture were analyzed at the annotated locations shown 

in Figure 44 with the associated coordinate systems. The maximum frequency of interest 

is 3200 Hz. Driving point measurements at the hose clip location in X, Y and Z directions 

performed using an impact hammer are shown in B.1. The reproducibility of mounting 

post-A is shown in B.2 after three assemblies of the post. Motor speed sweeps were 

performed with no motor shaft attachment and the acceleration response was measured on 

the rear-left motor foot and mounting post A located 5 feet away as shown in B.3. This test 

evaluates the motor feet to hose clip path through the bedplate. A driving point 

measurement on the top-left corner of the pump mounting fixture is shown in B.4 

 
Figure 44: Pre-Test Analysis Locations 

B.1 Mount Fixture Driving Points 

A driving point measurement was recorded at the clip location on each mounting 

post in the X, Y and Z directions. The X-direction curves and significant resonances are 
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shown in Figure 45 and Table 12. The Y-direction curves and significant resonances are 

shown in Figure 46 and Table 13. The Z direction curves have resonances with less 

response potential below 3200 Hz and are shown in Figure 47. The coherence of each FRF 

is shown on the secondary Y-Axis of each figure. The significant mounting post resonant 

frequencies are higher than the pumping frequencies of interest in this project and should 

not affect the results. 

 
Figure 45: +X Direction Driving Point Measurements for All Jack Stands A-D 

 
Table 12: Frequencies of Interest in +X Drive Point FRF 
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Figure 46: +Y Direction Driving Point Measurements for All Jack Stands A-D 

 
Table 13: Frequencies of Interest in +Y Drive Point FRF 
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Figure 47: +Z Direction Driving Point Measurements for All Jack Stands A-D 

 

B.2 Fixture Assembly Reproducibility 

The reproducibility of each mounting post was evaluated by assembling mounting 

post-A with the same procedures and performing a driving point measurement at the clip 

location. The spacer block was attached to the bedplate with as much torque as possible 

using a 2-foot adjustable wrench.  This clamp load was not a controlled variable. The 
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accelerometer was placed on top of the spacer block for each measurement. The 

reproducibility of each mounting post assembly is acceptable as shown in Figure 48. 

 
Figure 48: Jack Stand A Reproducibility 

B.3 Unloaded Motor Speed Sweeps 

The path from the motor feet to the hose clip location through the bedplate was 

evaluated by performing motor speed sweeps with no motor shaft attachment and 

measuring the responses at the rear-left motor foot and a mount location placed 5 feet away. 

A colormap of the response at the rear-left motor foot to a speed sweep from 0-1800 RPM 

is shown in Figure 49. The colormap of the X-direction response of hose mount post-A at 

a location 5-feet from the motor is shown in Figure 50. The mounting post-A resonances 

found in the driving point tests were excited by the motor through the bedplate. It is 

documented that measurements at a mounting post could have some contribution through 

the bedplate at the resonant frequencies of the mounting posts. The significant mounting 
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post resonant frequencies are higher than the pumping frequencies of interest in this project 

and therefore should not affect the results. 

 
Figure 49: Response of Rear-Left Motor Foot to 0-1800 RPM Motor Speed Sweep (No 

Pump Shaft Coupling) 

 
Figure 50: +X Response of Mount Location of Jack Stand A 5ft from Motor to 0-1800 

RPM Motor Speed Sweep 
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B.4 Pump Mount Fixture Corner Driving Point 

A driving point measurement was performed on the top-left corner of the pump 

mounting fixture and is shown in Figure 51 for all measured directions. The significant 

pump mount fixture resonant frequencies are higher than the pumping frequencies of 

interest in this project and should not affect the results. 

 
Figure 51: Driving Point Measurement at Corner of Pump Mount Fixture with Y-Dir 

Impact with Hammer 
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C Test Bench Setup and Startup Guidelines 
C.1 Startup Guidelines 

1. Perform safety walkaround and check for hydraulic oil leaks 
 

2. Turn on motor power, +24 V power supply, +5V power supply, 2 mA current 

supply, LMS front end, temperature display 

3. Open LMS Test.Lab Signature Testing Advanced. Direct to Measure tab and create 

analog display with online data for static pressure transducer, flow meter and motor 

speed signal. (It may be necessary to low-pass filter DC signals as they may be 

contaminated by power line frequencies from other components in the room). 

4. Arm the system in measurement tab 
 

5. Run test bench at 800 RPM unloaded for 5 minutes using drive unit remote. Ensure 

loading valve is fully open.  

6. Carefully apply hydraulic load using the potentiometer on the test bench control. 

Run at 1000 RPM and 1000 psi or similar condition until inlet oil temperature 

reaches 50°C (~15 minutes) 

7. Perform tests as desired 
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C.2 New Pump Break-In Procedure 

Procedures for breaking in the test bench pump were followed as shown in Figure 52. 

 
Figure 52: Pump Break-In Procedures 
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C.3 Test Bench Control Wiring Diagram 

 
Figure 53: Test Bench Control Wiring Diagram 
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D Source Flow Ripple Spike Resolution 
The source flow ripple for the test bench pump was determined using the pressure 

measurements and processing procedures described in section 2.3.1. The suggested 

measurement parameters according to ISO 10767-1 were a sample rate of 10,240 Hz and a 

measurement period of 0.8 seconds. This results in a frequency resolution of 1.25 Hz. The 

magnitude of the source flow ripple for a 1500 psi CPSS is shown in Figure 54. Spikes in 

the flow ripple results to unrealistic flow ripple quantities occurred at various frequencies 

that could not be correlated to events in operating condition data. The frequency of the flow 

ripple spikes was not consistent for all processed CPSS runs. A presumed cause and 

mitigation plan is described. 

 

Figure 54: Source Flow Ripple Results for 1500 psi CPSS with 2.5 Hz Frequency 
Resolution 
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Figure 55 shows the pressure ripple measurements for system 1 and system 2. It is shown 

that subtraction of pressure measurements within the same measurement run produce 

peaks at frequencies that correspond to the spikes in source flow ripple results.  

 

Figure 55: 1500 psi CPSS data with 1.25 Hz frequency resolution. System 1 - 𝑃𝑃1 (Top-
Left), System 1 - 𝑃𝑃2 (Top-Mid), System 1 (𝑃𝑃1 − 𝑃𝑃2) (Top-Right), System 2 - 𝑃𝑃1 (Bottom-

Left), System 2 - 𝑃𝑃2 (Bottom -Mid), System 2 (𝑃𝑃1 − 𝑃𝑃2) (Bottom -Right) 

 
Stationary data at 800 RPM and 580 psi was processed to look at the repeatability 

of the source flow ripple result at a single operating condition. A source flow ripple value 

was evaluated at every 0.8 second block of a 30 second measurement run as shown in 

Figure 56 for the first 5 pump orders. Spikes occurred in various blocks that could not be 

correlated to operating condition events.  
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Figure 56: Flow Ripple Repeatability from 800 RPM - 580 PSI SS Data 

The first pump order was examined in detail in Figure 57. A significant source flow 

ripple spike occurred only at the 8th measurement block. The difference in magnitude of 

the 8th block system 1 pressure measurements is shown in the top subplot and appears to 

be similar to other measurement blocks that do not produce source flow ripple peaks. The 

difference in phase of the 8th block is shown in the bottom subplot and is significantly 

different. It is expected that small nonlinear events are occurring in the system that do not 

affect the pressure magnitude but alter the phase of the measured complex pressure 

waveform. 
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Figure 57: Measured 9th Order Pressure Ripple Differences for System 1 

The measurement period was increased arbitrarily to 2 or 4 seconds to produce a 

frequency resolution of 0.5 or 0.25 Hz. The longer measurement time minimized the phase 

effect in the processing of the source flow ripple data. The same data from Figure 55 is 

shown in Figure 58 with a 2-second measurement period and the source flow ripple spike 

issue was significantly minimized. It is expected that since the CPSS runs were 4 minutes 

and 40 seconds long, the 5-6 RPM motor speed change over 2 seconds will still produce 

accurately tracked orders using an FFT-based method. 
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Figure 58: 1500 psi CPSS data with 0.5 Hz frequency resolution. System 1 - 𝑃𝑃1 (Top-
Left), System 1 - 𝑃𝑃2 (Top-Mid), System 1 (𝑃𝑃1 − 𝑃𝑃2) (Top-Right), System 2 - 𝑃𝑃1 (Bottom-

Left), System 2 - 𝑃𝑃2 (Bottom -Mid), System 2 (𝑃𝑃1 − 𝑃𝑃2) (Bottom -Right) 
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E Synthesized Orders and FRF comparison for all 
measurement locations 

Order sections and FRF’s based on modal parameters for pressure measurements 

at 528 mm, 710 mm, 935 mm, 1219 mm, 1442 mm, 1623 mm and 2130 mm are shown in 

sections E.1, E.2, E.3, E.4, E.5, E.6 and E.7 respectively. 

E.1 Order and FRF synthesis for location 528 mm from 
pump outlet 

 
Figure 59: Synthesized and Measured Comparison of 9th and 18th Order Sections at 

location 528 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 
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Figure 60: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 528 mm from Pump Outlet 

E.2 Order and FRF synthesis for location 710 mm from 
pump outlet 

 
Figure 61:Synthesized and Measured Comparison of 9th and 18th Order Sections at 
location 710 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 
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Figure 62: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 710 mm from Pump Outlet 

E.3 Order and FRF synthesis for location 935 mm from 
pump outlet 

 
Figure 63: Synthesized and Measured Comparison of 9th and 18th Order Sections at 

location 935 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 
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Figure 64: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 935 mm from Pump Outlet 

E.4 Order and FRF synthesis for location 1219 mm from 
pump outlet 

 
Figure 65: Synthesized and Measured Comparison of 9th and 18th Order Sections at 
location 1219 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 
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Figure 66: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 1219 mm from Pump Outlet 

E.5 Order and FRF synthesis for location 1442 mm from 
pump outlet 

 
Figure 67: Synthesized and Measured Comparison of 9th and 18th Order Sections at 
location 1442 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 
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Figure 68: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 1442 mm from Pump Outlet 

E.6 Order and FRF synthesis for location 1623 mm from 
pump outlet 

 
Figure 69: Synthesized and Measured Comparison of 9th and 18th Order Sections at 
location 1623 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 



www.manaraa.com

108 

 

 
Figure 70: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 1623 mm from Pump Outlet 

E.7 Order and FRF synthesis for location 2130 mm from 
pump outlet 

 
Figure 71: Synthesized and Measured Comparison of 9th and 18th Order Sections at 
location 2130 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom) 

 



www.manaraa.com

109 

 
Figure 72: Comparison of Measured FRF and FRF Expanded using Modal Parameters at 

Location 2130 mm from Pump Outlet 
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F MATLAB Processing 
MATLAB codes are provided for Source Flow Ripple processing and validation 

for 1500 psi CPSS, SBN Characterization and SBN Video creation, FRF based on pump 

outlet pressure using modal expansion and energy balancing method. 

F.1 Source Flow Ripple Processing 

The first 5 pump order sections must be exported from LMS Test.Lab to MATLAB 

in a single .MAT file for each pressure transducer measurement: System 1 – P0 (S1P0), 

System 1 – P1 (S1P1), System 2 – P0 (S2P0) and System 2 – P1 (S2P1). The motor speed 

range of the speed sweep, the order section RPM increment, and frequency resolution 

should be updated. The processing shown uses a 7-point moving average filter and uses a 

4 Hz frequency resolution for the combined spectrum. 

F.1.1 Source Flow Ripple Processing for 1500 psi CPSS 

 
%This is the source flow ripple processing script for 
the first 5 pump 
%orders (9, 18, 27, 36, 45) for the 1500 psi speed 
sweep 
  
clc 
clear 
close all 
  
%Load Pressure Ripple Data from P0 and P1 transducers 
for both system 
%measurements 
S1P0 = load('S1P0_1500psi.mat'); 
S1P0 = S1P0.OrderSection.y_values.values  ; 
S1P1 = load('S1P1_1500psi.mat'); 
S1P1 = S1P1.OrderSection.y_values.values  ; 
S2P0 = load('S2P0_1500psi.mat'); 
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S2P0 = S2P0.OrderSection.y_values.values  ; 
S2P1 = load('S2P1_1500psi.mat'); 
S2P1 = S2P1.OrderSection.y_values.values  ; 
  
%Initialize RPM range and freq. resolution that was 
used 
rpm = 800:10:2290; 
df = 0.25; 
  
%Solve for Source Flow Ripple (Qs) and Smooth Results 
for ii = 1:5 
  
    fmin = rpm(1)/60*9; 
    fmax = rpm(end)/60*45; 
  
bulk  = 1965006000; %285000 psi in Pa 
rho = 843; %0.8433 g/cc in kg/m3; 
c = sqrt(bulk/rho); %Speed of sound in m/s 
  
v = 3.2*10^-5; 
ro = 0.009525; %.375 inches in m 
  
w = (9*ii)*(rpm'/60)*2*pi; 
zeta = 1+sqrt(v./(2*ro^2.*w))-
1j*(sqrt(v./(2*ro^2.*w))+(v./(ro^2.*w))); 
  
B = ((zeta.*w)/c); 
Zc = ((rho*c*zeta)/(pi*ro^2)); 
Lr = 0.1905; %7.5 inches in m 
  
f = rpm/60*9*ii; 
numerator = 1000*(S1P0.*S2P1-S2P0.*S1P1)*1j; 
denominator = (S1P0-S2P0).*sin(B*Lr).*Zc; 
  
Qs = (numerator./denominator); 
  
Order.(strcat('order',num2str(ii)))(:,1) = f; 
Order.(strcat('order',num2str(ii)))(:,2) = 
sqrt(Qs(:,ii).^2/df)*sqrt(2.108); 
  
%Smooth Order Sections 
test = 
movmean(Order.(strcat('order',num2str(ii)))(:,2),7); 
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interp_freq_ord = (800:10:2340)/60*9*ii; 
interp_Qs_ord = 
interp1(Order.(strcat('order',num2str(ii)))(:,1),test,i
nterp_freq_ord,'pchip'); 
test2.(strcat('Order',num2str(ii))) = 
movmean(interp_Qs_ord,7); 
Section(:,ii) = test2.(strcat('Order',num2str(ii))); 
end 
  
% Sort Flow Ripple Results by Frequency Bin 
AllOrder = 
vertcat(Order.order1,Order.order2,Order.order3,Order.or
der4,Order.order5); 
SortAllOrder = sortrows(AllOrder); 
% 7 point moving average filter 
movavg1(:,1) = SortAllOrder(:,1); 
movavg1(:,2) = movmean(SortAllOrder(:,2),7); 
% Average duplicates 
[UA,~,idx] = unique(movavg1(:,1)); 
movavg1 = [UA,accumarray(idx,movavg1(:,2),[],@mean)]; 
%Set desired frequency resolution 
interp_freq = fmin:4:fmax; 
%moving average filter for additional smoothing 
interp_Qs = 
interp1(movavg1(:,1),movavg1(:,2),interp_freq,'pchip'); 
Combined_Spectrum = movmean(interp_Qs,7); 
  
% %% Import Machine Data from Excel File 
[num,txt,raw] = xlsread('Machine_Flow_Ripple.xlsx'); 
Machine_freq = cell2mat(raw(:,1)); 
Machine_Qs = 
sqrt(str2double(txt(:,1)).^2/2.108)*sqrt(2.108); 
  
%% PLOTTING 
for ii = 1:5 
figure(1) 
semilogy(abs(interp_freq),abs(Combined_Spectrum),'b','L
ineWidth',1.2) 
hold on 
semilogy(Machine_freq,abs(Machine_Qs),'k','LineWidth',2
) 
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legend('1500 psi Sweep','Machine 
Sweep*','Location','SouthWest') 
ylabel('|Source Flow Ripple| (L/s)') 
xlabel('Frequency (Hz)') 
set(gca,'FontSize',14) 
  
Qs_1500psi(:,1)  = interp_freq; 
Qs_1500psi(:,2)  = Combined_Spectrum; 
  
save('Qs_1500psi.mat','Qs_1500psi') 
end 
  
%% 
  
Qs_OrderSect_1500psi(:,1) = rpm; 
Qs_OrderSect_1500psi(:,2:6) = [Order.order1(:,2) 
Order.order2(:,2) Order.order3(:,2) Order.order4(:,2) 
Order.order5(:,2)]; 
  
col = [0 .45 .74; .93 .69 .13; .47 .67 .19 ; .64 .08 
.18 ; .85 .33 .10]; 
  
for ii = 1:5 
   figure(2) 
   
semilogy(abs(Qs_OrderSect_1500psi(:,1)/60*9*ii),abs(Qs_
OrderSect_1500psi(:,ii+1))) 
   hold on 
   
semilogy((800:10:2340)/60*9*ii,abs(Section(:,ii)),'Colo
r',col(ii,:),'LineWidth',3) 
    
   figure(3) 
   semilogy((800:10:2340)/60*9*ii,abs(Section(:,ii)),'-
-','Color',col(ii,:),'LineWidth',1.5) 
   hold on 
    
end 
  
figure(2) 
ylabel('|Source Flow Ripple| (L/s)') 
xlabel('Frequency (Hz)') 
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set(gca,'FontSize',14) 
title('1500 psi Source Flow Ripple') 
lgd = legend('9th Order','Smoothed 9th Order','9th 
Order','Smoothed 9th Order',... 
    '9th Order','Smoothed 9th Order','9th 
Order','Smoothed 9th Order',... 
    '9th Order','Smoothed 9th 
Order','Location','southoutside'); 
lgd.NumColumns = 5; 
  
figure(3) 
hold on 
semilogy(abs(interp_freq),abs(Combined_Spectrum),'b','L
ineWidth',2) 
semilogy(Machine_freq,abs(Machine_Qs),'k','LineWidth',2
) 
ylabel('|Source Flow Ripple| (L/s)') 
xlabel('Frequency (Hz)') 
set(gca,'FontSize',14) 
title('1500 psi Source Flow Ripple') 
lgd = legend('9th Order','18th Order','27th 
Order','36th Order','45th Order','1500 psi Combined 
Spectrum','Machine Test','Location','southoutside'); 
lgd.NumColumns = 5; 
save('Qs_1500psi.mat','Qs_OrderSect_1500psi') 

F.2 SBN Characterization and SBN Video 

This SBN processing script exports dynamic force data and integrated acceleration 

data from LMS Test.Lab in separate files for each of the first 5 orders. The order data is 

then sorted using a function called Sort_SBN_Data. The dynamic pressure measured at the 

outlet as well as the FRF’s generated from either equation (12) or the OBMA modal 

expansion process are inputs that must be in the working directory. 

F.2.1 Measured SBN Processing and SBN Video Processing 
clc 
clear 
close all 
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%Load Hose Data 
%Run 3 & 4 Dynamic Force 
data.Run4.DF.Order9 = load('Run4_DF_Order9.mat'); 
data.Run4.DF.Order18 = load('Run4_DF_Order18.mat'); 
data.Run4.DF.Order27 = load('Run4_DF_Order27.mat'); 
data.Run4.DF.Order36 = load('Run4_DF_Order36.mat'); 
data.Run4.DF.Order45 = load('Run4_DF_Order45.mat'); 
  
%Run 3 & 4 Dynamic Force 
data.Run4.Vel.Order9 = load('Run4_Vel_Order9.mat'); 
data.Run4.Vel.Order18 = load('Run4_Vel_Order18.mat'); 
data.Run4.Vel.Order27 = load('Run4_Vel_Order27.mat'); 
data.Run4.Vel.Order36 = load('Run4_Vel_Order36.mat'); 
data.Run4.Vel.Order45 = load('Run4_Vel_Order45.mat'); 
  
%Run 3 & 4 Pressure 
data.Run4.P0= load('Run4_P0.mat'); 
  
%% Calculate SBN 
[SBN] = Sort_SBN_Data (data); 
  
%% SBN Loss Repeatability Movie 
%Sum of SBN Losses over 5 Orders 
rpm = 800:5:2315; %Input Motor Speed Range 
ref_rad = 0.2; % Reference SBN Circle Radius 
  
%SUM of each order and initialize peak hold 
Mount1.Run4 = abs(sum(SBN.Run4.Mnt710,2)); 
Mount2.Run4 = abs(sum(SBN.Run4.Mnt1442,2)); 
Mount3.Run4 = abs(sum(SBN.Run4.Mnt2130,2)); 
Mount1.Run4_Max = 0; 
Mount2.Run4_Max = 0; 
Mount3.Run4_Max = 0; 
  
%% 
%SBN Movie saves a figure for the SBN result at each 
RPM and overlays on an 
%image of the hydraulic circuit and saves as a frame. 
All frames are saved 
%as an avi video 
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for ii = 1:length(rpm) 
    f2 = figure(2); 
    f2.Position = [1,1,1673,435]; 
    %RPM Display 
        
    %Set SBN value and peak hold 
    if Mount1.Run4(ii)> Mount1.Run4_Max 
        Mount1.Run4_Max = Mount1.Run4(ii); 
    end 
     
    if Mount2.Run4(ii)> Mount2.Run4_Max 
        Mount2.Run4_Max = Mount2.Run4(ii); 
    end 
     
    if Mount3.Run4(ii)> Mount3.Run4_Max 
        Mount3.Run4_Max = Mount3.Run4(ii); 
    end 
     
    % Generate Bar Chart and Peak Hold in leftmost 
subplot 
    ax1 = subplot(1,3,1); 
    y = [Mount3.Run4(ii) Mount3.Run4_Max 
Mount2.Run4(ii) Mount2.Run4_Max Mount1.Run4(ii) 
Mount1.Run4_Max]; 
    b = bar(y); 
    b.FaceColor = 'flat'; 
    b.CData(1,:) = [ 1 0 1]; 
    b.CData(2,:) = [ 1 1 1]; 
    b.CData(3,:) = [ 1 0 0]; 
    b.CData(4,:) = [ 1 1 1]; 
    b.CData(5,:) = [ 0 0 1]; 
    b.CData(6,:) = [ 1 1 1]; 
    ax1.FontSize = 16; 
    ylim([0 0.6]) 
    ylabel('SBN Power (W)') 
    set(ax1,'XTick',[1 3 5],'XTickLabel',... 
        {'Filter In','Mount 2','Mount 1'}); 
     
     
    subplot(1,3,[2:3]) 
    %Set Picture Background 
    axis([0 4 -1 1]) 
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    I = imread('Mnt710Mnt1442.png'); 
    hold on 
    h = image(xlim,-ylim,I); 
    title('CONFIGURATION 1','FontSize',16) 
     
    %Create SBN Circles 
    radii.Mnt1 = (ref_rad*Mount1.Run4(ii))/.2; 
    radii.Mnt2 = (ref_rad*Mount2.Run4(ii))/.2; 
    radii.Mnt3 = (ref_rad*Mount3.Run4(ii))/.2; 
    viscircles([2.668 -0.2471],radii.Mnt1,'Color',[0 0 
1]); 
    viscircles([1.847 -0.2471],radii.Mnt2,'Color',[1 0 
0]) 
    viscircles([1.15 -0.2471],radii.Mnt3,'Color',[1 0 
1]) 
     
    %FORMATTING and ANNOTATIONS 
    r = rectangle; 
    r.LineWidth = 2; 
    r.Curvature = [1,1]; 
    r.FaceColor = 'w'; 
    r.Position = [0.1 0.6 0.4 0.4]; 
     
    dim = [0.4299,0.6709,0.2179,0.235]; 
    scalestr1 = {'Scale:';'0.2 W'}; 
    scale1 = 
annotation('textbox',dim,'String',scalestr1); 
    scale1.FontSize = 14; 
    scale1.EdgeColor = 'none'; 
     
    dim = 
[0.755528989838613,0.717241379310345,0.139270771069933,
0.177164367816092]; 
    rpmstr = {strcat(num2str(rpm(ii)),' RPM')}; 
    rpm_count = 
annotation('textbox',dim,'String',rpmstr); 
    rpm_count.FontSize = 30; 
    rpm_count.EdgeColor = 'k'; 
    rpm_count.BackgroundColor = 'w'; 
    rpm_count.VerticalAlignment = 'Middle'; 
    rpm_count.HorizontalAlignment = 'Center'; 
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    F(ii) = getframe(f2); 
    last_frame = F(ii); 
    close all 
end 
  
%SAVE to AVI 
v = VideoWriter('SBNLoss_Congfig1.avi','Uncompressed 
AVI'); 
v.FrameRate = 10; 
open(v) 
writeVideo(v,F); 
close(v) 
 

F.2.2 Sort_SBN_Data function 

 
function [SBN] = Sort_SBN_Data(data) 
%This function sorts the raw input LMS Test.Lab data 
into usable variables 
%for Run number kk 
  
%Force 
for kk = 4 % Input Run Number 
    for ii = 1:5 
        RunNum = (strcat('Run',num2str(kk))); 
        OrderNum = (strcat('Order',num2str(9*ii))); 
         
        Fx.(RunNum).Mnt710(:,ii) = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,1); 
        Fy.(RunNum).Mnt710(:,ii)  = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,2); 
        Fz.(RunNum).Mnt710(:,ii)  = -
(data.(RunNum).DF.(OrderNum).OrderSection.y_values.valu
es(:,3)); 
         
        Fx.(RunNum).Mnt1442(:,ii) = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,4); 
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        Fy.(RunNum).Mnt1442(:,ii)  = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,5); 
        Fz.(RunNum).Mnt1442(:,ii)  = -
(data.(RunNum).DF.(OrderNum).OrderSection.y_values.valu
es(:,6)); 
         
        Fx.(RunNum).Mnt2130(:,ii) = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,7); 
        Fy.(RunNum).Mnt2130(:,ii)  = 
data.(RunNum).DF.(OrderNum).OrderSection.y_values.value
s(:,8); 
        Fz.(RunNum).Mnt2130(:,ii)  = -
(data.(RunNum).DF.(OrderNum).OrderSection.y_values.valu
es(:,9)); 
    end 
end 
  
  
%Velocity 
for kk = 4 
    for ii = 1:5 
        RunNum = (strcat('Run',num2str(kk))); 
        OrderNum = (strcat('Order',num2str(9*ii))); 
         
        Vx.(RunNum).Mnt710(:,ii) = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,1); 
        Vy.(RunNum).Mnt710(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,2); 
        Vz.(RunNum).Mnt710(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,3); 
         
        Vx.(RunNum).Mnt1442(:,ii) = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,4); 
        Vy.(RunNum).Mnt1442(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,5); 
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        Vz.(RunNum).Mnt1442(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,6); 
         
        Vx.(RunNum).Mnt2130(:,ii) = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,7); 
        Vy.(RunNum).Mnt2130(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,8); 
        Vz.(RunNum).Mnt2130(:,ii)  = 
data.(RunNum).Vel.(OrderNum).OrderSection.y_values.valu
es(:,9); 
    end 
end 
  
Fr.Run4.Mnt710 = 
sqrt(Fx.Run4.Mnt710.^2+Fy.Run4.Mnt710.^2+Fz.Run4.Mnt710
.^2); 
Fr.Run4.Mnt1442 = 
sqrt(Fx.Run4.Mnt1442.^2+Fy.Run4.Mnt1442.^2+Fz.Run4.Mnt1
442.^2); 
Fr.Run4.Mnt2130 = 
sqrt(Fx.Run4.Mnt2130.^2+Fy.Run4.Mnt2130.^2+Fz.Run4.Mnt2
130.^2); 
  
Vr.Run4.Mnt710 = 
sqrt(Vx.Run4.Mnt710.^2+Vy.Run4.Mnt710.^2+Vz.Run4.Mnt710
.^2); 
Vr.Run4.Mnt1442 = 
sqrt(Vx.Run4.Mnt1442.^2+Vy.Run4.Mnt1442.^2+Vz.Run4.Mnt1
442.^2); 
Vr.Run4.Mnt2130 = 
sqrt(Vx.Run4.Mnt2130.^2+Vy.Run4.Mnt2130.^2+Vz.Run4.Mnt2
130.^2); 
  
SBN.Run4.Mnt710 = Fr.Run4.Mnt710.*Vr.Run4.Mnt710; 
SBN.Run4.Mnt1442 = Fr.Run4.Mnt1442.*Vr.Run4.Mnt1442; 
SBN.Run4.Mnt2130 = Fr.Run4.Mnt2130.*Vr.Run4.Mnt2130; 
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F.3 FRF using Modal Expansion and Order Synthesis 

Order Based Modal Analysis should be performed in LMS Test.Lab. The OBMA 

results are input into 4 sheets of an excel file in a pre-processing routine as shown. The 

first sheet is for the mode shapes for all modes extracted using OBMA. Column A shows 

the numeric distance from the pump outlet of the measurement point. Column B shows the 

measurement point name. Column C shows the real part of the MODE 1 shape and Column 

D shows the imaginary part of the MODE 1 shape. The remaining OBMA mode shapes 

are formatted in the same way as Column C and D in successive columns. Row 1 is used 

for table headers and Column A should be sorted smallest to largest. This should be done 

for each order processed using OBMA. This information is found by right-clicking on 

OBMA processing folder and navigating to properties. 

 

Figure 73: Sheet 1 OBMA Excel File Pre-Processing 

Sheet 2 is for the complex reference factors formatted identically to Sheet 1. There should 

a reference factor for each mode for all reference locations. The pump outlet (0mm) was 

the reference location for the OBMA processing in this project. 
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Figure 74: Sheet 2 OBMA Excel File Pre-Processing 

Sheet 3 Column A and Column B are identical to Sheet 1. Column C and Column D are 

the real and imaginary parts of the lower residual. Column E and Column F are the real 

and imaginary parts of the upper residual. It is important that Column A is sorted smallest 

to largest. 

 

Figure 75: Sheet 3 OBMA Excel File Pre-Processing 

Right click on the OBMA processing in LMS Test.Lab and navigate to the properties tab. 

Select ALL properties and copy and paste into cell A1 of sheet 4. It is important that the 

real part is in column M and the imaginary part is in Column L. Deleting the text so that 

Column M and L are numeric is necessary. 
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Figure 76: Sheet 4 OBMA Excel File Pre-Processing 

The desired location for modal expansion is input as the exp_loc variable. The motor speed 

range for each order section should be updated appropriately. Only the 9th and 18th order 

FRF’s were processed using this technique. 

F.3.1 Modal Expansion FRF Processing 

 
%Ben Kolb 
%Dynamic Pressure at Expanded locations 
% Requires modparam function, Expandshapes function, 
SynthOrders function 
 
clc 
clear 
close all 
  
for jj = 1:2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Exported Modal Data from LMS Test.Lab Order Bassed 
Modal Analysis 
    filename = '1500psi_Order9_7DOF.xlsx'; 
    if jj ==1 
        filename = '1500psi_Order9_7DOF.xlsx'; 
        order = 9; 
    else 
        filename = '1500psi_Order18_7DOF.xlsx'; 
        order = 18; 
    end 
%INPUT the desired expansion location in terms of 
distance from the pump outlet 
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    exp_loc = 1079; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%modparam function loads modal data from formatted 
excel files 
[shape,Ua,ref,pole,resid,master_dof] = 
modparam(filename); 
  
%Expandshapes function expands the mode shapes 
[Un,T,LRn,URn,exp_dof] = 
ExpandShapes(Ua,master_dof,exp_loc,resid); 
% 
%SynthOrders function sythesizes the orders using 
expanded data sets 
[SynthOrd,rpm,f] = 
SynthOrders(Un,ref,pole,LRn,URn,order); 
SO.(strcat('Order',num2str(order))) = SynthOrd(:,end); 
  
%Plot Shapes 
% [fig] = plotshapes(exp_dof,Un,order,U_7DOF); 
  
%Generate the FRFs referencing measured pump outlet 
pressure data 
Meas_P0 = load('Measured_1500psi_P0.mat'); 
Meas_P0 = Meas_P0.OrderSection.y_values.values; 
  
Pi = SynthOrd(:,end); 
Pj = Meas_P0(:,1); 
SynthFRF(:,jj) = Pi.*conj(Pj)./(Pj.*conj(Pj)); 
end 
  
%Plotting Synthesized Orders 
fig2 = figure(2); 
semilogy(rpm/60*9,abs(SO.Order9),':b','Linewidth',2) 
hold on 
semilogy(rpm/60*18,abs(SO.Order18),':r','Linewidth',2) 
legend('Synthesized 9th Order','Synthesized 18th 
Order','Location','southoutside'); 
xlabel('Motor Speed (RPM)') 
ylabel('Pressure (Pa)') 
  



www.manaraa.com

125 

%Plotting FRF's from Synthesized Orders 
fig3 = figure(3); 
semilogy(rpm,abs(SynthFRF(:,1)),':b','LineWidth',2) 
hold on 
semilogy(rpm,abs(SynthFRF(:,2)),':r','LineWidth',2) 
xlabel('Frequency (Hz)') 
ylabel('Mag FRF (/)') 
title(strcat('1500 psi :',num2str(exp_loc),'mm')) 
legend('Synthesized 9th Order FRF','Synthesized 18th 
Order FRF') 
  
%Store and save FRF data in one variable 
SynthFRF_Orders(:,1) = SynthFRF(:,1); 
SynthFRF_Orders(:,2) = SynthFRF(:,2); 
save('SynthFRF_1079mm','SynthFRF_Orders') 
 

F.3.2 modparam function 

 
function [shape,Ua,ref,pole,resid,master_dof] = 
modparam(filename) 
%THis function sorts the excel formatted shape data 
into usable modal 
%parameter variables for modal expansion processing 
  
shape_data = xlsread(filename,1); 
ref_data = xlsread(filename,2); 
resid_data = xlsread(filename,3); 
properties = xlsread(filename,4); 
  
master_dof = shape_data(:,1); 
shape_data = shape_data(:,3:end); 
ref_data = ref_data(:,3:end); 
resid_data = resid_data(:,3-1:end); 
  
for ii = 1:size(shape_data,2)/2 
    n = 2*ii-1; 
    shape.(strcat('mode',num2str(ii))) =  
shape_data(:,n) + 1j*shape_data(:,n+1); 
    Ua(:,ii) = shape.(strcat('mode',num2str(ii))); 
    ref(:,ii) =  ref_data(:,n) + 1j*ref_data(:,n+1); 
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    pole(:,ii) =  properties(ii,5) + 
1j*properties(ii,4); 
end 
    resid.lower =  resid_data(:,2) + 
1j*resid_data(:,3); 
    resid.upper =  resid_data(:,4) + 
1j*resid_data(:,5); 
end 

F.3.3 ExpandShapes function 

 
function [Un,T,LRn,URn,exp_dof] = 
ExpandShapes(Ua,master_dof,exp_loc,resid) 
% This function interpolates the expanded locations 
into the mode shapes, formulates the SEREP 
%transformation matrix and expands the residuals 
  
exp_dof = vertcat(master_dof,exp_loc); 
  
for ii = 1:size(Ua,2) 
    exp_shape = 
interp1(master_dof,Ua(:,ii),exp_loc,'pchip'); 
    Un(:,ii) = vertcat(Ua(:,ii),exp_shape); 
end 
  
T = Un * pinv(Ua); 
  
LRn = T*resid.lower; 
URn = T*resid.upper; 
 

F.3.4 SynthOrders function 

 
function [SynthOrd,rpm,f] = 
SynthOrders(Un,ref,pole,LRn,URn,order) 
%This function synthesizes the orders from the expanded 
modal parameters 
  
rpm = 800:5:2345; 
f = rpm./60*order; 
w = 2*pi*f; 
total = 0; 
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for ii = 1:size(Un,2) 
part.(strcat('mode',num2str(ii))) = 
Un(:,ii).*ref(:,ii)./(1j*w - pole(:,ii)) ... 
    + conj(Un(:,ii)).*conj(ref(:,ii))./(1j*w - 
conj(pole(:,ii))); 
total = total + part.(strcat('mode',num2str(ii))); 
end 
Y = (1j*w).^4.*(total + LRn./(1j*w).^2 + URn); 
SynthOrd = Y'; 
end 

F.4 Energy Balancing 

Energy balance processing requires the source flow ripple, measured outlet 

dynamic pressure, measured dynamic force and integrated measured acceleration from 

each of the first 5 order sections in separate .MAT files. A .mat file for the FRF generated 

using either equation (12) or the modal expansion processing is also required. A sortdata 

function reformats the raw imported .MAT files into usable variables and a Noise_Metrics 

function processes the variables into FBN, SBN and energy balance results. 

F.4.1 Energy Balance Processing 

 
clc 
clear 
close all 
  
%Load Flow Ripple Order Sections 
%UNITS: m^3/s 
data.Qs.O9 = load('Qs_1500psi_Order9.mat'); 
data.Qs.O18 = load('Qs_1500psi_Order18.mat'); 
data.Qs.O27 = load('Qs_1500psi_Order27.mat'); 
data.Qs.O36 = load('Qs_1500psi_Order36.mat'); 
data.Qs.O45 = load('Qs_1500psi_Order45.mat'); 
  
%Load Measured FRF's for 710 mm and 1442 mm 
%UNITS: Pa/Pa 
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data.MFRF.Mnt710 = load('FRF_710mm_BAC.mat'); 
data.MFRF.Mnt1442 = load('FRF_1442mm_CAB.mat'); 
  
% Load Pump Outlet Pressure 
%UNITS: Pa 
%Note: Data was collected with the wrong sensitvity, 
the appropriate 
%correction factor was applied 
data.P0.Mnt710and1442.data =  
load('DP_P0_710and1442.mat'); 
  
% Load Force Components At Mounts 
%UNITS: N 
data.Fx.Mnt710 = load('DF_710mm_X.mat'); 
data.Fy.Mnt710 = load('DF_710mm_Y.mat'); 
data.Fz.Mnt710 = load('DF_710mm_Z.mat'); 
  
data.Fx.Mnt1442 = load('DF_1442mm_X.mat'); 
data.Fy.Mnt1442 = load('DF_1442mm_Y.mat'); 
data.Fz.Mnt1442 = load('DF_1442mm_Z.mat'); 
  
% Load Velocity Components at Mounts 
%Units: m/s 
data.Vx.Mnt710 = load('Vel_710mm_X.mat'); 
data.Vy.Mnt710 = load('Vel_710mm_Y.mat'); 
data.Vz.Mnt710 = load('Vel_710mm_Z.mat'); 
  
data.Vx.Mnt1442 = load('Vel_1442mm_X.mat'); 
data.Vy.Mnt1442 = load('Vel_1442mm_Y.mat'); 
data.Vz.Mnt1442 = load('Vel_1442mm_Z.mat'); 
  
%Sort loaded data into Source Flow Ripple, FRFs, Outlet 
pressures and mount 
%forces and velocities 
[Qs,MFRF,P0,Fx,Fy,Fz,Fr,Vx,Vy,Vz,Vr] = sortdata(data); 
  
for ii = 1:2 
PA.Mnt710(:,ii) = 
P0.Mnt710Mnt1442(:,ii).*MFRF.Mnt710(:,ii).*0.0001979326
09; 
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PA.Mnt1442(:,ii) = 
P0.Mnt710Mnt1442(:,ii).*MFRF.Mnt1442(:,ii).*0.000197932
609; 
end 
  
rpm = 800:5:2315; 
%Solve for Source FBN, Local FBN and SBN, Energy 
Balance and Force and 
%Energy Transfer Functions 
[FBNs,FBN,SBN,EB,FTF,ETF] = 
Noise_Metrics(Qs,MFRF,P0,Fr,Vr); 
  
%% 
  
Mount1.Config1 = abs(sum(SBN.Mnt710,2)); 
Mount2.Config1 = abs(sum(SBN.Mnt1442,2)); 
  
EBCurve1 = 
abs(sum(Qs(:,1:5),2).*sum(P0.Mnt710Mnt1442(:,1:5),2)) - 
abs(sum(SBN.Mnt710(:,1:5),2)); 
EBCurve2 = 
abs(sum(Qs(:,1:5),2).*sum(P0.Mnt710Mnt1442(:,1:5),2)) - 
abs(sum(SBN.Mnt710(:,1:5),2)- 
sum(SBN.Mnt1442(:,1:5),2)); 
FBNCurve1 = 
sum(Qs(:,1:5),2).*((MFRF.Mnt710(:,1).*P0.Mnt710Mnt1442(
:,1)+MFRF.Mnt710(:,2).*P0.Mnt710Mnt1442(:,2)+MFRF.Mnt71
0(:,3).*P0.Mnt710Mnt1442(:,3)+MFRF.Mnt710(:,4).*P0.Mnt7
10Mnt1442(:,4)+MFRF.Mnt710(:,5).*P0.Mnt710Mnt1442(:,5))
); 
FBNCurve2 = 
sum(Qs(:,1:5),2).*((MFRF.Mnt1442(:,1).*P0.Mnt710Mnt1442
(:,1)+MFRF.Mnt1442(:,2).*P0.Mnt710Mnt1442(:,2)+MFRF.Mnt
1442(:,3).*P0.Mnt710Mnt1442(:,3)+MFRF.Mnt1442(:,4).*P0.
Mnt710Mnt1442(:,4)+MFRF.Mnt1442(:,5).*P0.Mnt710Mnt1442(
:,5))); 
FBNs_Mnt710Mnt1442 = 
sum(Qs(:,1:5),2).*sum(P0.Mnt710Mnt1442(:,1:5),2); 
  
f3 = figure(3); 
plot(rpm,abs(FBNs_Mnt710Mnt1442),'r','LineWidth',2) 
hold on 
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plot(rpm,abs(FBNCurve1),'b','LineWidth',2) 
plot(rpm,EBCurve1,'--k','LineWidth',2) 
legend('Source FBN','FBN Prediction: Mount 1','Energy 
Balance: Mount 1','Location','NorthWest') 
axis([800 2340 0 60]) 
xlabel('Motor Speed (RPM)') 
ylabel('Power (Watts)') 
set(gca,'FontSize',20); 
set(f3,'Position',[1,1,1128.8,308.8]) 
  
f4 = figure(4); 
  
plot(rpm,abs(FBNs_Mnt710Mnt1442),'r','LineWidth',2) 
hold on 
plot(rpm,abs(FBNCurve2),'b','LineWidth',2) 
plot(rpm,EBCurve2,'--k','LineWidth',2) 
  
legend('Source FBN','FBN Prediction: Mount 2','Energy 
Balance: Mount 2','Location','NorthWest') 
axis([800 2340 0 60]) 
xlabel('Motor Speed (RPM)') 
ylabel('Power (Watts)') 
set(gca,'FontSize',20); 
set(f4,'Position',[1,1,1128.8,308.8]) 

F.4.2 sortdata function 

 
function [Qs,MFRF,P0,Fx,Fy,Fz,Fr,Vx,Vy,Vz,Vr] = 
sortdata(data) 
  
% This function takes the raw import order sections 
from LMS Test.Lab and 
% reformats to usable MATLAB variables 
  
%Flow ripple dataconverted from liters/sec to m^3/s 
Qs(:,1) = data.Qs.O9.Section(1:304)'/1000; 
Qs(:,2) = data.Qs.O18.Section(1:304)'/1000; 
Qs(:,3) = data.Qs.O27.Section(1:304)'/1000; 
Qs(:,4) = data.Qs.O36.Section(1:304)'/1000; 
Qs(:,5) = data.Qs.O45.Section(1:304)'/1000; 
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%Formatting measured FRF order sections from data 
import 
MFRF.Mnt710 = 
data.MFRF.Mnt710.OrderSection.y_values.values(1:304,:); 
MFRF.Mnt1442 = 
data.MFRF.Mnt1442.OrderSection.y_values.values(1:304,:)
; 
  
%Formatting measured outlet pressure order sections 
from data import 
P0.Mnt710Mnt1442 = 
data.P0.Mnt710and1442.data.OrderSection.y_values.values
(1:304,:)*(0.1/(1.46778*10^-7)); 
  
%Sorting force and velocity data from data import and 
forumulating 
%resultant Fr and Vr 
Fx.Mnt710 = 
data.Fx.Mnt710.OrderSection.y_values.values(1:304,:); 
Fy.Mnt710 = 
data.Fy.Mnt710.OrderSection.y_values.values(1:304,:); 
Fz.Mnt710 = -
(data.Fz.Mnt710.OrderSection.y_values.values(1:304,:)); 
%Data Collected in -Z 
  
Fx.Mnt1442 = 
data.Fx.Mnt1442.OrderSection.y_values.values(1:304,:); 
Fy.Mnt1442 = 
data.Fy.Mnt1442.OrderSection.y_values.values(1:304,:); 
Fz.Mnt1442 = -
(data.Fz.Mnt1442.OrderSection.y_values.values(1:304,:))
; %Data Collected in -Z 
  
Vx.Mnt710 = 
data.Vx.Mnt710.OrderSection.y_values.values(1:304,:); 
Vy.Mnt710 = 
data.Vy.Mnt710.OrderSection.y_values.values(1:304,:); 
Vz.Mnt710 = 
data.Vz.Mnt710.OrderSection.y_values.values(1:304,:); 
  
Vx.Mnt1442 = 
data.Vx.Mnt1442.OrderSection.y_values.values(1:304,:); 
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Vy.Mnt1442 = 
data.Vy.Mnt1442.OrderSection.y_values.values(1:304,:); 
Vz.Mnt1442 = 
data.Vz.Mnt1442.OrderSection.y_values.values(1:304,:); 
  
Fr.Mnt710 = sqrt(Fx.Mnt710.^2 + Fy.Mnt710.^2 + 
Fz.Mnt710.^2); 
Fr.Mnt1442 = sqrt(Fx.Mnt1442.^2 + Fy.Mnt1442.^2 + 
Fz.Mnt1442.^2); 
  
Vr.Mnt710 = sqrt(Vx.Mnt710.^2 + Vy.Mnt710.^2 + 
Vz.Mnt710.^2); 
Vr.Mnt1442 = sqrt(Vx.Mnt1442.^2 + Vy.Mnt1442.^2 + 
Vz.Mnt1442.^2); 
  
end 

F.4.3 Noise_Metrics Function 

 
function [FBNs,FBN,SBN,EB,PA,FTF,ETF] = 
Noise_Metrics(Qs,MFRF,P0,Fr,Vr) 
  
%This function outputs Source FBN, Local FBN, Measured 
SBN and Energy 
%balance at each mount from the date sorted with the 
sortdata function. 
%Additionally the "fluid force" (mount pressure ripple 
* cross sectional area), a force 
%transfer function and an energy transfer function are 
computed. 
  
%Source Fluidborne Noise 
for ii = 1:5 
FBNs.Mnt710Mnt1442(:,ii) = 
Qs(:,ii).*P0.Mnt710Mnt1442(:,ii); 
end 
  
%Local Mount Fluidborne Noise @ 710mm and @ 1442 mm 
for ii = 1:2 
FBN.Mnt710(:,ii) = 
Qs(:,ii).*MFRF.Mnt710(:,ii).*P0.Mnt710Mnt1442(:,ii); 
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FBN.Mnt1442(:,ii) = 
Qs(:,ii).*MFRF.Mnt1442(:,ii).*P0.Mnt710Mnt1442(:,ii); 
end 
  
%Local Structureborne Noise @ 710mm and @ 1442 mm 
SBN.Mnt710 = Fr.Mnt710.*Vr.Mnt710; 
SBN.Mnt1442 = Fr.Mnt1442.*Vr.Mnt1442; 
  
%Energy Balance Methode Results @ 710mm and @ 1442 mm 
for ii = 1:5 
EB.Mnt710(:,ii) = FBNs.Mnt710Mnt1442(:,ii) - 
SBN.Mnt710(:,ii); 
EB.Mnt1442(:,ii) = FBNs.Mnt710Mnt1442(:,ii) - 
SBN.Mnt710(:,ii) - SBN.Mnt1442(:,ii); 
end 
  
%Fluid Force  @ 710mm and @ 1442 mm 
for ii = 1:2 
PA.Mnt710(:,ii) = 
.3067.*MFRF.Mnt710(:,ii).*P0.Mnt710Mnt1442(:,ii); 
PA.Mnt1442(:,ii) = 
.3067.*MFRF.Mnt1442(:,ii).*P0.Mnt710Mnt1442(:,ii); 
end 
  
% %Force and Energy Transfer Functions @ 710mm and @ 
1442 mm 
 loc = [710,1442]; 
%  
for ii = 1:2 
    for kk = 1:2 
        Gxf = 
Fr.(strcat('Mnt',num2str(loc(kk))))(:,ii).*conj(PA.(str
cat('Mnt',num2str(loc(kk))))(:,ii)); 
        Gff = 
PA.(strcat('Mnt',num2str(loc(kk))))(:,ii).*conj(PA.(str
cat('Mnt',num2str(loc(kk))))(:,ii)); 
        FTF.(strcat('Mnt',num2str(loc(kk))))(:,ii) = 
Gxf./Gff; 
         
        Gxf = 
SBN.(strcat('Mnt',num2str(loc(kk))))(:,ii).*conj(FBN.(s
trcat('Mnt',num2str(loc(kk))))(:,ii)); 
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        Gff = 
FBN.(strcat('Mnt',num2str(loc(kk))))(:,ii).*conj(FBN.(s
trcat('Mnt',num2str(loc(kk))))(:,ii)); 
        ETF.(strcat('Mnt',num2str(loc(kk))))(:,ii) = 
Gxf./Gff; 
    end 
     
end 
  
end 
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	1 Introduction
	Hydraulic systems are used in mobile heavy equipment for their high power density. This means that a well-designed hydraulic circuit can produce more power for its size than any other available actuation system. The hydraulic engineer needs to direct ...
	There is a need for lab-based experimental studies on real heavy equipment circuits to help understand fluid vibrational energy flow from the pump to each clipping point. This will help validate models and create design tools for hydraulic hose routin...
	1.1 Motivation
	Hydraulic noise is a significant issue in the development of heavy equipment machines. The hydraulic noise can contribute to the overall noise level potentially harming the hearing of the operator or exist as an annoyance that may lead to negative per...
	The hydraulic noise originates at the pump outlet and passes through the system as FBN energy. This FBN energy interacts with the hose wall where it is transferred into the frame of the machine at any hose clip attachment location. If the fluid or hyd...
	Caterpillar provided funding to Michigan Tech to develop a test bench to measure and evaluate hose clip locations on simple hydraulic circuits. The results and developed test methods gained through this work will go towards updating design tools and g...

	1.2 Background
	Background information is provided on the primary noise mechanisms in the design of hydraulics for heavy equipment and the governing physics of hydraulic piping system fluid-structure interaction (FSI). Existing FSI test benches and test methods for h...
	1.2.1 Noise Mechanisms in Heavy Equipment Hydraulic Systems
	There are three noise mechanisms in hydraulic systems that can couple together to produce significant design challenges. These mechanisms are FBN, SBN, and ABN.
	1.2.1.1 Fluid-borne Noise
	The fluid energy responsible for fluid-borne noise can be broken up into two source categories, pump pulsations, and valve noise.
	1.2.1.1.1 Pump Pulsations

	Real pumps generate an unsteady pressure and flow. In an axial piston pump, the incoming volume of fluid is divided and drawn into cylinders on the suction stroke and then pressurized and expelled on the delivery stroke. An ideal pump is timed so that...
	In the engineering of hydraulic pumps, port timing is the most effective pump design parameter to optimize for reduction of these ripples. The noise control components for FBN reduction once the pulsations enter into the hydraulic circuit can be reduc...
	1.2.1.1.2 Valve Noise

	Additional noise generation mechanisms associated with the hydraulic fluid are cavitation, valve excitation, and waterhammer. These mechanisms are related to the interaction of the fluid and a control component. Cavitation is the implosion of small en...
	1.2.1.2 Structure-borne Noise
	Oscillating internal forces and moments in the axial piston pump generate imbalances that transmit energy through the pumping cylinder connections and into the pump casing [11]. The forcing function for this excitation exists at pumping frequencies or...
	1.2.1.3 Airborne Noise
	It is helpful to consider ABN in mobile heavy equipment hydraulic circuits with respect to the source-path-receiver paradigm. The pump is the noise generation source producing FBN, the FBN energy can transfer into the structure through multiple paths ...
	Isolation of the pump and hoses from the frame members and supports is a commonly proposed solution. Isolation with rubber compounds can work well for a specific design frequency but may suffer in broad frequency range applications or in attenuating l...

	1.2.2 Fluid-Structure Interaction
	The piping system fluid-structure interaction (FSI) research field is described through its origins, governing physics and mechanisms and then explored through existing experimental applications and model validation methods.
	1.2.2.1 Origins, Governing Physics, and Mechanisms
	Researchers have been devoted to understanding the FSI phenomena in piping systems since a foundational study in 1876 [17]. Early FSI studies specific to piping systems were aimed at understanding waterhammer shock excitation. This was followed by an ...
	Fluid-structure interaction can be divided into three mechanisms: friction coupling, Poisson coupling, and junction coupling. Friction coupling comes from the shear stress at the interaction of the hose or pipe wall and the fluid. Poisson coupling com...
	1.2.2.2 Existing Experimental Test Setups and Methods for Mount Assessment
	A 2015 review of FSI research in pipeline systems points out that less than 20% of their presented literature contained experimental validations [21]. The designs for existing experimental test setups are explored, followed by existing methods for hyd...
	1.2.2.2.1 Fluid Excitation Mechanism

	Validations focused on analyzing waterhammer shock waves commonly use solid rods or impact hammers to excite the fluid in a pipe system. For validation of hydraulic circuits with flow and pressure pulsations, a rotary valve is commonly used. This meth...
	Figure 1: Pipe Clamp Vibration Reduction Test Rig
	Figure 2: Pump Pressure Pulsations Test Rig
	1.2.2.2.2 Boundary Conditions

	Understanding the boundary condition variables in an experimental test configuration requires a consideration of the rig shape and hose mounting types. Suspension systems for hoses and pipe mounting have been used to minimize the structural energy los...
	1.2.2.2.3 Measurement Transducers

	Typical transducers used for FSI model correlation are dynamic pressure transducers, accelerometers, and microphones. Intensity probes have been used for transfer path analysis of a simple gear pump – pipe – load valve system [33]. Force transducers a...
	1.2.2.3 Existing Methods for Hydraulic Mount Assessment
	A reconfiguration of the hydraulic hose clipping points to reduce the transmission of FBN energy into the structure is the lowest weight and most cost-effective noise control solution because it does not add any additional components to the circuit. I...


	1.3 Project Milestones and Scope
	1.3.1 Project Milestones
	The primary project milestones that will define the success of this project are as follows.
	1. A test bench is developed in Michigan Tech’s hydraulic laboratory that produces data that correlates to field data collected on a reference hydraulic circuit.
	2. The test bench pump source flow ripple is characterized using ISO 10767-1.
	3. Test methods are established to determine the fluid and line resonances.
	4. Test metrics are developed to evaluate SBN at mount clipping points and measurements show that optimal hose clip placement can be a viable solution to SBN reduction.
	5. A predictive power flow approach is developed that quantifies the fluidborne energy at any location in the pump outlet hose based on measurements and modal parameters.

	1.3.2 Scope
	The results of this project will come from a generalized mobile equipment hydraulic circuit that will replicate hydraulic noise issues for a variety of line configurations. The resonances of the fluid, hydraulic line and attaching structures are all w...



	2 Theory
	This section provides background on methods used to collect, analyze and interpret the test bench data. The theory is categorized by hydraulic system sizing for test bench development, structural dynamics characterization, and hydraulic energy charact...
	2.1 Hydraulic System Sizing
	The correct sizing of a hydraulic system is important for maximized performance, long-term durability, and operator safety. The following empirical equations for flow rate, power, and torque are shown in equations 1-3 respectively and are used for siz...
	The flow rate, 𝑄, rotational frequency, 𝜔, volume, 𝑉, power, 𝑃, pressure, 𝑝, mechanical efficiency, 𝜂, and torque, 𝑇 should be converted to the units denoted in the subscript of each variable.

	2.2 Structural Dynamics Characterization
	Analytical background to structural dynamics characterization is provided before describing alternative experimental techniques using measured and unmeasured force inputs.
	2.2.1 Analytical Characterization Methods
	The simplest vibrating system can be described by the mass, stiffness, and damping of an SDOF system excited by a force, F. If the system is linear and time-invariant, the model can be expanded to multiple degrees of freedom through the use of symmetr...
	The relationship between the displacement response and the forcing function is known as the system’s compliance FRF denoted 𝐻(𝜔). This is a slice of the system transfer function at 𝑗𝜔 and is shown diagrammatically in Figure 3 and formulated for ea...
	Figure 3: Analytical Compliance Block Diagram
	Each FRF in the multiple DOF FRF matrix shown in equation (6) can also be expressed in partial fraction form shown in equation (7) where it is described by system poles,  ,𝜆-𝑛.,  and residues, ,𝐴-𝑛.. The poles of the system are the roots of the de...
	In an analytical model, the systems mode shapes and natural frequencies can be found from the solution of the eigenvalue problem shown in equation (10) where the resulting eigenvalue matrix, 𝜆, is a diagonal matrix of squared natural frequencies and ...
	The physical space FRF shown in equation (6) can be transformed with the eigenvector matrix to modal space notation, 𝑞,𝜔., using equation (7). Modal space notation uncouples all DOFs to produce SDOF FRF’s for the contribution of each mode to the ove...
	Both the modal space representation and the pole-residue form of the FRF explicitly show that the overall response of any DOF can be described by the sum of the response of each mode. This is known as modal superposition. In real systems, the mass, st...

	2.2.2 Experimental Characterization Methods with Measured Inputs
	Moving from an analytical to signal processing notation, the FRF in Figure 3 can be represented where 𝐹,𝜔. is the measured input spectrum and 𝑥,𝜔. is the measured output spectrum. In the case of real measurements, there will be noise on both the o...
	The output signal from any transducer on a structure is measuring the overall response of the system at a specific measurement location to the given excitation input. The response can be measured throughout a spatial domain to produce a shape known as...
	EMA requires that the structure being analyzed is linear and time-invariant. A mode must be excited by the input forcing function to be evaluated using EMA. It is typical to use an impact hammer to produce an impulse response or a shaker with a white ...
	The estimated modal parameters can be validated by synthesizing the FRF using a finite number of modes, the upper residual, 𝑈𝑅, and the lower residual, 𝐿𝑅,  using equation (13).  If all modes that significantly contribute to the overall response a...
	All mode shapes that describe a system are unique. The modal assurance criterion (MAC) shown in equation (15) is used to determine the relationship between any two extracted mode shapes, 𝑛 and 𝑚, and quantify similarity.
	Methods based on MAC have been developed to analyze the similarity between two FRFs without the need for a complete set of EMA data [42]. The cross signature assurance criterion (CSAC) shown in equation (16) quantifies the shape differences of two FRF...
	Techniques have been developed for taking modal parameters from an EMA and expanding the information to analytical DOF [43]. These expansion processes require a transformation matrix to relate each measured DOF to an analytical DOF.  In the case of th...

	2.2.3 Experimental Characterization Methods with Unmeasured Inputs
	A subset of EMA known as operational modal analysis (OMA) has been developed to be applied to systems where measuring the input force is not possible or practical [44].  OMA uses measured responses from ODS data to estimate modal parameters with modif...
	A unique challenge in OMA arises for the case of rotating machinery. The fundamental excitation frequency for components kinematically connected to a rotating shaft is known as an order. The frequency of an order can be determined using equation (20)....
	The tracking of orders allows for analyzing the contribution of a subcomponent to the overall measured vibration level. The simplest order tracking method is known as FFT order tracking. In this method, a vibration response time history and pulse trai...
	Rotating component data is best visualized using colormaps made of incremental vibration response measurements over a speed sweep of the rotating reference shaft. In this display type, excited orders are easily identified by diagonal lines of high amp...
	The foundational assumption of OBMA is that broadband excitation is achieved with run up or run down speed sweeps of the rotating reference shaft. The OBMA technique assumes that the input is a multiple sine sweep excitation defined by two correlated ...


	2.3 Hydraulic Energy Characterization
	It is hypothesized that the noise energy in a simple hydraulic circuit can be characterized using FBN and SBN sound power metrics and then predicted at downstream locations using a power flow approach known as energy balancing. The ABN contribution to...
	2.3.1 Fluidborne Sound Power
	Fluid power available to do work in a hydraulic system is the product of the fluid mean pressure and mean flow. The power available to generate FBN in the system is the product of the dynamic elements of the flow and pressure signals. The total source...
	The source flow ripple of a hydraulic piston pump can be measured using ISO 10767-1 also known as the two pressures – two systems method [27]. This method requires a test setup with measurement of dynamic pressure at two locations separated by a refer...
	Two unique standing waves are generated in the pipe from two measurements using load valves at two different locations independently. The complex source flow ripple quantity can be determined using equation (25) by measuring the complex pressure rippl...
	The distribution of FBN energy in the outlet hose can be observed with the fluid ODS at a given operating speed. The ODS shape is a superposition of the excited fluid and structural modes. The theoretical fluid mode frequencies of a straight pipe with...

	2.3.2 Structureborne Power
	An SBN power metric using measured force, 𝐹, and velocity, 𝑣, at each pump order 𝑖 was used to evaluate the SBN generated at the hydraulic circuit mounts. Evaluating SBN power with both force and velocity is preferred over using either parameter al...

	2.3.3 Energy Balancing
	Energy balancing is a power flow approach for the assessment of the FBN and SBN power through the outlet line of a hydraulic circuit. Starting with the source FBN power metric and SBN power losses at the first mount established using equation (22) and...
	The ABN power losses will be significantly smaller than the FBN and SBN power and are therefore considered negligible for the balancing of energy. The energy balance results can be validated with the local FBN predictions at the mount using equation (...



	(1)
	3 Test Bench Development
	A generalized hydraulic circuit test bench was developed at Michigan Tech for assessment of FBN and SBN energy transfer. The primary design considerations are discussed followed by component selection and setup, operation, safety, and correlation to t...
	3.1 Test Bench Design Considerations
	A hydraulic circuit that has SBN issues was used as a reference circuit for the development of the hydraulic noise test bench. Correcting the problems of this circuit is not the primary purpose of the test bench. The test bench will be used to underst...
	 Replicate the dynamics of the reference hydraulic circuit.
	 Easily reconfigurable hose routing.
	 Remote control of system pressure and motor speed.
	 Safe and repeatable operation.

	3.2 Test Bench Component Selection and Setup
	The test bench components were selected to simulate the reference hydraulic circuit as well as follow general hydraulic circuit design guidelines for performance and safety. A comparison of the reference hydraulic circuit requirements and the capabili...
	Table 1: Hydraulic Circuit Requirements
	3.2.1 Hydraulic Pump
	The pump used in the reference hydraulic circuit is a 28cc variable axial piston pump with a nominal pressure of 3626 psi and a maximum pressure of 4569 psi. The tapered shaft on this pump made it difficult to find a suitable low-cost pump shaft coupl...
	The test bench pump was mounted to a 1-inch thick steel fixture and bolted directly to the lab bedplate as shown in Figure 4. A driving point FRF at the corner of the pump mounting fixture was measured during a pre-test analysis to document resonances...
	Figure 4: Hydraulic Test Bench Pump and Motor

	3.2.2 Motor Selection and Setup
	Based on equation (2) and (3) and the pump flow and rated speed parameters, there were two 3-phase electric motor choices, 25 HP or 100 HP, available at MTU that could be used for the test bench. The 25 HP motor had an 1800 RPM rated maximum speed whi...

	3.2.3 Circuit Hoses and Routing
	Easily reconfigurable and in-plane with the outlet of the pump were the primary component selection criteria for hose mounting. This was achieved by modifying massive jack stands as shown in Figure 5. A 5-inch length of 2-inch steel square stock was u...
	A 2.13-meter length of SAE 100R16-10 (5/8-inch ID) was chosen for the first circuit configuration used on the test bench circuit to match the reference hydraulic circuit. The same hose clips used on the machine were used to attach the hoses to the fix...
	Figure 5: Hydraulic Hose Mount (Left) and End-of-Line System (Right)

	3.2.4 Hydraulic Oil and Reservoir
	The reference hydraulic circuit uses a 10W oil with a viscosity of 39.8 cSt at 40 C and between 6.0 and 7.0 cSt at 100 C. Chevron – Rando HDZ 32 was selected for use with the test bench circuit since it can be purchased locally through MTU facilities....
	A 25-gallon reservoir was selected based on the 3x capacity of the circuit rule-of-thumb. All data collection was started at 50 C oil temperature measured by a Type K thermocouple at the end of the suction line. It is important the oil in the circuit ...

	3.2.5 End-of-Line System
	The end-of-line system shown in Figure 5 provides the hydraulic load for the test bench.  The fluid goes through a high-pressure filter, loading valve and a variable-area type flow meter before returning to the reservoir in an SAE 100R3-16 hose. A sho...


	3.3 Test Bench Safety
	The safety of the test bench was addressed by enclosing all rotating machinery and ensuring the pressure ratings of all hydraulic components used in the working line exceed the rated cutoff pressure (2320 psi) of the selected pump. The pump is designe...

	3.4 Test Bench Operation
	The test bench operating conditions were monitored using three transducers and wired as shown in Figure 6. A laser tachometer was directed at the motor shaft with 1 pip/rev. The static pressure transducer was threaded into a spacer block at the outlet...
	Figure 6: Test Bench Operation and Control
	The test bench motor speed was controlled manually with a remote wired to the motor drive unit. The system mean pressure was controlled by a potentiometer on the load valve control remote as shown in Figure 6. A data collection run requires simultane...

	3.5 Hydraulic Noise Test Bench and Machine Correlation
	The final assembly of the hydraulic noise test bench is shown schematically in Figure 7. The primary components are shown in Table 2. The complete component list can be found in Appendix A. The pressure ripple levels were measured at the outlet of the...
	Figure 7: Reconfigurable Michigan Tech Hydraulic Test Bench Schematic
	Table 2: Primary Test Bench Components and Instrumentation
	Table 3: Pressure Ripple Level Comparison between the Reference Hydraulic Circuit and MTU Test Bench


	4 Source FBN Characterization
	Characterization of the source FBN requires measurement of the outlet pressure ripple and pump source flow ripple. The pump source flow ripple was measured using ISO 10767-1 test procedures. The test bench configuration, data collection, and results a...
	4.1 Test Bench Configuration
	The hydraulic noise test bench was configured as shown schematically in Figure 8 with the primary components and instrumentation shown in Table 2. The complete test bench setup in the lab is shown in Figure 9. Three ¾ inch schedule 80 pipes were used ...
	Figure 8: ISO 10767-1 Test Bench Schematic
	Table 4: Primary Components and Instrumentation for Source Flow Ripple Testing
	Figure 9: ISO 10767-1 Test Bench Setup
	Using equation (24) and a reference length of 0.137 meters, the maximum frequency of interest was determined to be 4,182 Hz. The ISO standard was used as a guide and not strictly followed due to budget limitations. Deviation in setup from the standard...

	4.2 Data Collection and Procedures
	The ISO 10767-1 test section is shown in Figure 10. Data was collected using dynamic pressure transducers (PCB 113B22) from two pressure transducer locations, ,𝑃-1. and ,𝑃-2.. This was done for two system conditions with identical operating conditio...
	Figure 10: ISO 10767-1 Test Section

	4.3 Source FBN Results
	An example of a colormap and extracted pump order sections from the ,𝑃-1. pressure measurement is shown in Figure 11. It is observed that most of the energy is in the 9th, 18th, 27th, 36th and 45th orders. 9th order is the fundamental pump order sinc...
	Figure 11: ,𝑃-1. Colormap and Order Sections from System1 - 1500 psi CPSS
	Using equations (25)-(29) the source flow ripple was determined for all CPSS. An example of the 1500 psi CPSS results for the first 5 pump orders is shown in Figure 12. Significant variation was observed in the raw flow ripple results output. The resu...
	Figure 12: 1500 psi CPSS Source Flow Ripple Results
	Pump orders were used to compare lab and reference hydraulic circuit results. The processed single-spectra source flow ripple from test bench data are shown in Figure 13.
	Figure 13: Single-Spectrum Source Flow Ripple Processing
	It was found that the source flow ripple results correlate well with the reference hydraulic circuit data below 1000 Hz. The pumps used for comparison are not identical which could be cause for some of the deviation. It is supposed that the dissimilar...


	5 Operational Deflection and Mode Shapes
	Data sets for a straight 2.23-meter hose configuration were collected and processed to observe the structure and fluid ODS and mode shapes.
	5.1 Test Bench Configuration
	The test bench was configured as shown schematically in Figure 14 using the primary components and instrumentation shown in Table 2. The complete test bench setup in the lab is shown in Figure 15. Hoses denoted A, B, and C of length 486 mm, 667.5 mm a...
	Figure 14: Fluid Pressure Characterization Schematic
	Figure 15: Pressure Characterization A-B-C Configuration

	5.2 Data Collection Procedures
	Dynamic pressure data sets were collected at the 8 pressure measurement locations shown in Figure 16 using 1500 psi CPSS conditions. A sample rate of 10,240 Hz with 1 second measurement periods was used. A Hanning window was applied to minimize leakag...
	Measured concurrently with pressure ripple ODS, 11 single-axis accelerometers were roved across the top of the hose structure collecting 57 ODS deflection measurement points as shown in Figure 16. The accelerometers were spaced uniformly across the le...
	Figure 16: Vertical Deflection Measurements (Top-Left), 8 Pressure Ripple Measurements (Bottom-Left) and Circumferential Deflection Measurements (Right)

	5.3 Operational Deflection and Mode Shape Results
	The ODS of the fluid and the hose can be viewed in a combined and overlaid manner for any motor operating speed for a given excitation frequency. The FSI relationships between the fluid pressure and the hose can be observed for any order excitation. T...
	Figure 17: Combined Deflection Shape Analysis at 820 RPM
	The theoretical fluid modes in a cylindrical pipe can be determined using equation (30) assuming open end - closed end boundary conditions. It is assumed that the test bench hose system would have fluid modes similar to this analytical solution with a...
	Table 5: Fluid Modes from Operating Deflection Shapes
	Figure 18: Fluid Mode Shapes from Operating Deflection Shapes
	The 9th order energy is the dominant contributor to the overall ripple energy in the fluid. Using equation (20) for the CPSS performed from 800 – 2340 RPM, the 9th order frequency range is 120 – 351 Hz. This means that fluid modes above the third harm...
	The third fluid mode dominating the ODS at 2300 RPM is shown in Figure 19. The 9th order forcing frequency at 2300 RPM is 345 Hz which is near the predicted location of the third fluid mode. There is significantly less energy in the higher pump orders...
	Figure 19: Order-Based Deflection Shapes at 2300 RPM
	The absolute magnitude of the pressure ODS for a 1500 psi CPSS is shown Figure 20 in three operation speed segments. It is observed that as motor speed approaches 2300 RPM the third fluid mode is amplified. There is an FBN minimum near 0.7 meters from...
	Figure 20: Absolute Magnitude of Operating Deflection Shapes at A) 1600 - 2340 RPM, B) 1200-1600 RPM, C) 800-1200 RPM


	6 Structureborne Noise Characterization
	An SBN metric was established using measured acceleration and dynamic force. Two hose configurations, a straight hose and a curved hose, were tested to determine the measured mount SBN level and compared it to the FBN level in the hose. It is predicte...
	6.1 Test Bench Configurations
	A 2.13-meter hose that matches the combined total length of the hose segments used in the hydraulic pressure characterization tests was used for SBN characterization measurements. The test bench was configured for a straight and curved hose with the s...
	Figure 21: Straight Hose Configuration Schematic
	Figure 22: Straight Hose Configuration Setup
	Figure 23: Curved Hose Configuration Schematic
	Figure 24: Curved Hose Configuration Setup A-B

	6.2 Data Collection Procedures
	A SBN metric was formulated using operational force and velocity measurements. This was done with the integrated tri-axial acceleration measured on the bolt head of the hose mount and the tri-axial dynamic force measurements using PCB 260A01 dynamic f...
	Figure 25: SBN metric data collection (Left) Pump Outlet Pressure Measurement (Right)
	Data was collected in 1000 psi, 1500 psi, and 2000 psi CPSS runs from 800 – 2340 RPM. SS runs at 800 RPM-580 psi, 1500 RPM – 1500 psi and 2300 RPM – 2300 psi were also collected. The 1500 psi CPSS results were analyzed since associated ODS data was av...
	A perturbation test was performed by moving hose mount 𝐴 0.28 meters closer to the pump outlet in the curved hose configuration. The perturbation amount was arbitrary, however, the mount was moved to a location where higher FBN energy in the hose was...
	Figure 26: Perturbation Test

	6.3 Structureborne Noise Characterization Results
	The colormaps shown in Figure 27 show the cross-correlation between the measured dynamic force and pump outlet pressure and the measured acceleration and the pump outlet pressure. The colormaps show that apart from a few fixture resonances near 800 Hz...
	Figure 27: Crosspower of Dynamic Force Measurements and Pump Outlet Pressure Ripple (Top) Crosspower of Velocity Measurements and Pump Outlet Pressure Ripple (Bottom)
	The results of the straight hose SBN characterization test using equation (31) is shown in Figure 28 in both a logarithmic and linear scale. It is observed from the SBN curves that above 1600 RPM the measured SBN at mount B is significantly higher tha...
	Figure 28: Comparison of Straight Hose Mount A and Mount B SBN
	Figure 29: Snapshot at 2300 RPM of Straight Hose Video SBN Analysis
	The SBN metric was evaluated and compared for multiple runs for the same circuit configuration. A comparison of two measurement runs is shown in Figure 30. The repeatability of the measurements is acceptable.
	Figure 30: Repeatability of SBN Measurements
	The results of the curved hose SBN characterization test using equation (31) is shown in Figure 31 and shows similar results compared to the straight hose test. Above 1800 RPM, the measured SBN at the mount B location is significantly higher than the ...
	Figure 31: Comparison of Curved Hose Mount A and Mount B SBN
	The results of the curved and straight hose characterization tests are shown in the same plot in Figure 32. A significant difference between the two tests was not observed for the data sets processed. It was expected that there would some SBN contribu...
	Figure 32: Comparison of Straight Hose and Curved Hose SBN Results
	A perturbation test was designed where mount 𝐴 was moved closer to the pump to a location denoted 𝐴′. There was more FBN energy predicted at 𝐴′ using the fluid pressure ODS. Mount 𝐵 and Mount ,𝐵-′. remained in the same location for both measureme...
	Figure 33: Curved Hose Perturbation Test Results


	7 Energy Balancing
	Energy balance processing as described in section 2.3.3 requires source FBN power, mount FBN power and mount SBN power for all motor speeds being evaluated. The straight hose configuration data used in the SBN characterization tests were used to evalu...
	Figure 34: Intermediate Hose Pressure Ripple Measurements
	Two methods for generating an FRF were explored to predict hose mount pressure ripple levels based on pump outlet pressure ripple level. The first method generates FRF’s for only the measured locations from the hydraulic pressure ODS tests. The second...
	7.1 FRF based on Pressure Ripple Measurements
	FRF’s based on pressure ripple measurements uses the measured pressure data from the pressure ODS characterization tests described in chapter 5. The mounting locations available are limited by the spatial resolution of the ODS characterization tests. ...
	Figure 35: FRF's from Measured Pressure Ripple Data Referencing Pump Outlet Pressure
	Figure 36: FRF from first 5 Pump Orders at Mount A (710 mm from Pump Outlet)
	Table 6: Percent Error Predicting Downstream Pressure Using Measured Pressure FRF's and SS 1500 RPM - 1500 psi Data

	7.2 FRF based on Modal Parameters
	FRF based on modal parameters uses the measured pressure data from the pressure ODS characterization tests in chapter 5 and the OBMA techniques in section 2.2.3. Using the extracted order sections and LMS Test.Lab OBMA processing add-in, the frequenci...
	1. Organize the measured order sections for each measured location from each pump order of interest using the ODS characterization test data.
	2. Use LMS Test.Lab OBMA and the organized order sections to get the modal parameters (frequency, shape, damping, upper and lower residual, complex reference factor) for each pump order of interest.
	3. Interpolate the desired expanded location into mode shape vector ensuring the resulting shape is smooth.
	4. Use SEREP techniques to generate a transformation matrix and expand the upper and lower residuals to include the new pressure location using equation (18) and equation (19) respectively.
	5. The order section can be synthesized using the expanded modal parameters with equation (21) and then used to produce FRF’s using the measured outlet pressure ripple order sections and equation (12).
	The accuracy of the method was tested by eliminating one DOF from the OBMA processing set and synthesizing order sections using modal parameters extracted from the remaining DOF (Synthesized 6DOF). This synthesized order section was compared against t...
	The FRF’s generated using synthesized 6DOF order sections are compared with the FRF’s using measured order sections for mount A and mount B locations for 9th and 18th order in Figure 38 and Figure 40 respectively. The synthesized and measured FRF’s fo...
	Figure 37: Synthesized and Measured Comparison of 9th and 18th Order Sections at Mount A location (710 mm from Pump Outlet) for 9th Order (Top) and 18th Order (Bottom)
	Figure 38: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Mount A Location (710 mm from Pump Outlet)
	Figure 39: Synthesized and Measured Comparison of 9th and 18th Order Sections at Mount B location (710 mm from Pump Outlet) for 9th Order (Top) and 18th Order (Bottom)
	Figure 40: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Mount B Location (1442 mm from Pump Outlet)
	Table 7: Least Square Error of Synthesized Orders from Modal Parameters using 7DOF and All DOF
	Table 8: Comparison of Measured FRF to FRF from Extracted Modal Parameters using CMAC and FRFSF

	7.3 Energy Balance Results
	The energy balance was quantified for straight hose configuration test data using equation (32) and the FRF’s from measured order sections. The noise metric power flow for the 2000 RPM condition is shown diagrammatically in Figure 41. The energy balan...
	Figure 41: Energy Balance Results at 2000 RPM for both Mounts in the Straight Hose Configuration
	Figure 42: Energy Balancing at Mount A
	Figure 43: Energy Balancing at Mount B
	The expected balance of power through the outlet hose does not match with FBN predictions at each mount location. There may be unmeasured loss mechanisms or pressure ripple prediction methods are not accurate enough to validate the current formulation...


	8 Discussion
	This project has produced a test bench that replicates machine circuit FBN without the influence of other noise sources present in situ. The test bench design isolates the SBN analysis to primarily FBN and hose deflection contributions. Test procedure...
	The experimental test bench developed is unique from existing test rigs that use hydraulic circuits on compliant structures for FSI model validation [39]. The likelihood of errors due to base excitation of fixture resonances was significantly reduced ...
	The observed direct FBN to SBN relationship occurred over a wider frequency range than expected and the shape of the pressure ODS in the hose was dominated by fluid modes excited primarily by first pump order energy. The broader range is believed to b...
	An EMA performed on the hydraulic pipelines of an aircraft system quantified the curvature effect on natural frequencies of long aircraft hydraulic hoses. It was also concluded that long line lengths will reduce the hydraulic line resonances to within...
	The observed errors in the balancing of transmitted FBN power may be associated with either unmeasured noise loss mechanisms or the pressure ripple prediction methods are inaccurate. It is assumed that the latter is more probable than the former. Aver...
	Additional hose clip configurations should be tested to validate the concluded FBN to SBN results. The small number of configurations tested limits the confidence in generalizing the conclusions of this project to all possible circuit designs. The res...
	A noted flaw in the study design is that the ODS shapes of the hose structure were not performed for the circuit used in the curved and straight hose SBN tests. It is expected that any reconfiguration of the hose mounts will alter the structural modal...
	Reproducing the observed FBN and SBN relationship at clipping points, improving energy balance results and assessing inaccessible clip locations is the recommended future direction for this project. The conclusions of the presented work can be validat...
	The test methods and conclusions that have been drawn from this research will be applied to planned continued hydraulic noise research at MTU. The procedures and metrics established will be expanded to more complex circuits by the systematic reintrodu...

	9 Conclusions
	The purpose of this project was to confirm that optimized placement of hose clips on a hydraulic hose is a viable solution to SBN reduction. This was accomplished by developing a set of test procedures and energy metrics for characterizing the hydraul...
	Characterization of the hydraulic noise mechanisms using a typical EMA approach could not be used since it was not possible to isolate and measure the excitation input. Additionally, the measurements needed to be collected in a specific operational co...
	The ODS approach relies on an assumption that the fluid mode shape dominates the ODS at pumping frequencies near the fluid natural frequencies. There were no curve fitting techniques used in this approach. An estimate for frequency and shape of the fl...
	The described ODS characterization procedure was able to identify the third fluid mode excited at 2300 RPM. The third fluid mode at this speed had a peak and node near 1/3 and 2/3 of the total hose length from the pump outlet respectively. These locat...
	The expected results of the power flow balancing approach were not achieved. It was theorized that the FBN power at any location in the outlet hose could be predicted by subtracting the SBN power at the hose mounts from the initial pump source FBN pow...
	It is expected that planned further investigations will increase the confidence level of the concluded FBN to SBN relationship that is currently limited by the small number of configurations tested. Additional experiments to quantify the SBN to ABN ef...
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	A Hydraulic Test Bench Component List
	A.1 2.13-meter Hose Test Configuration


	Table 9: 2.13-Meter Hose Configuration Component List
	A.2 Source Flow Ripple Test Configuration

	Table 10: Source Flow Ripple Configuration Component List
	A.3 Test Bench Controller

	Table 11: Test Bench Control Component List
	B Pre-Test Analysis

	A pre-test fixture analysis was performed to understand and document the resonances that could appear in future tests. The 4 mounting posts, the motor-bedplate attachment, and the pump mounting fixture were analyzed at the annotated locations shown in...
	Figure 44: Pre-Test Analysis Locations
	B.1 Mount Fixture Driving Points

	A driving point measurement was recorded at the clip location on each mounting post in the X, Y and Z directions. The X-direction curves and significant resonances are shown in Figure 45 and Table 12. The Y-direction curves and significant resonances ...
	Figure 45: +X Direction Driving Point Measurements for All Jack Stands A-D
	Table 12: Frequencies of Interest in +X Drive Point FRF
	Figure 46: +Y Direction Driving Point Measurements for All Jack Stands A-D
	Table 13: Frequencies of Interest in +Y Drive Point FRF
	Figure 47: +Z Direction Driving Point Measurements for All Jack Stands A-D
	B.2 Fixture Assembly Reproducibility

	The reproducibility of each mounting post was evaluated by assembling mounting post-A with the same procedures and performing a driving point measurement at the clip location. The spacer block was attached to the bedplate with as much torque as possib...
	Figure 48: Jack Stand A Reproducibility
	B.3 Unloaded Motor Speed Sweeps

	The path from the motor feet to the hose clip location through the bedplate was evaluated by performing motor speed sweeps with no motor shaft attachment and measuring the responses at the rear-left motor foot and a mount location placed 5 feet away. ...
	Figure 49: Response of Rear-Left Motor Foot to 0-1800 RPM Motor Speed Sweep (No Pump Shaft Coupling)
	Figure 50: +X Response of Mount Location of Jack Stand A 5ft from Motor to 0-1800 RPM Motor Speed Sweep
	B.4 Pump Mount Fixture Corner Driving Point

	A driving point measurement was performed on the top-left corner of the pump mounting fixture and is shown in Figure 51 for all measured directions. The significant pump mount fixture resonant frequencies are higher than the pumping frequencies of int...
	Figure 51: Driving Point Measurement at Corner of Pump Mount Fixture with Y-Dir Impact with Hammer
	C Test Bench Setup and Startup Guidelines
	C.1 Startup Guidelines


	1. Perform safety walkaround and check for hydraulic oil leaks
	2. Turn on motor power, +24 V power supply, +5V power supply, 2 mA current supply, LMS front end, temperature display
	3. Open LMS Test.Lab Signature Testing Advanced. Direct to Measure tab and create analog display with online data for static pressure transducer, flow meter and motor speed signal. (It may be necessary to low-pass filter DC signals as they may be cont...
	4. Arm the system in measurement tab
	5. Run test bench at 800 RPM unloaded for 5 minutes using drive unit remote. Ensure loading valve is fully open.
	6. Carefully apply hydraulic load using the potentiometer on the test bench control. Run at 1000 RPM and 1000 psi or similar condition until inlet oil temperature reaches 50 C (~15 minutes)
	7. Perform tests as desired
	C.2 New Pump Break-In Procedure

	Procedures for breaking in the test bench pump were followed as shown in Figure 52.
	Figure 52: Pump Break-In Procedures
	C.3 Test Bench Control Wiring Diagram

	Figure 53: Test Bench Control Wiring Diagram
	D Source Flow Ripple Spike Resolution

	The source flow ripple for the test bench pump was determined using the pressure measurements and processing procedures described in section 2.3.1. The suggested measurement parameters according to ISO 10767-1 were a sample rate of 10,240 Hz and a mea...
	Figure 54: Source Flow Ripple Results for 1500 psi CPSS with 2.5 Hz Frequency Resolution
	Figure 55 shows the pressure ripple measurements for system 1 and system 2. It is shown that subtraction of pressure measurements within the same measurement run produce peaks at frequencies that correspond to the spikes in source flow ripple results.
	Figure 55: 1500 psi CPSS data with 1.25 Hz frequency resolution. System 1 - ,𝑃-1. (Top-Left), System 1 - ,𝑃-2. (Top-Mid), System 1 (,𝑃-1.−,𝑃-2.) (Top-Right), System 2 - ,𝑃-1. (Bottom-Left), System 2 - ,𝑃-2. (Bottom -Mid), System 2 (,𝑃-1.−,𝑃-2....
	Stationary data at 800 RPM and 580 psi was processed to look at the repeatability of the source flow ripple result at a single operating condition. A source flow ripple value was evaluated at every 0.8 second block of a 30 second measurement run as sh...
	Figure 56: Flow Ripple Repeatability from 800 RPM - 580 PSI SS Data
	The first pump order was examined in detail in Figure 57. A significant source flow ripple spike occurred only at the 8th measurement block. The difference in magnitude of the 8th block system 1 pressure measurements is shown in the top subplot and ap...
	Figure 57: Measured 9th Order Pressure Ripple Differences for System 1
	The measurement period was increased arbitrarily to 2 or 4 seconds to produce a frequency resolution of 0.5 or 0.25 Hz. The longer measurement time minimized the phase effect in the processing of the source flow ripple data. The same data from Figure ...
	Figure 58: 1500 psi CPSS data with 0.5 Hz frequency resolution. System 1 - ,𝑃-1. (Top-Left), System 1 - ,𝑃-2. (Top-Mid), System 1 (,𝑃-1.−,𝑃-2.) (Top-Right), System 2 - ,𝑃-1. (Bottom-Left), System 2 - ,𝑃-2. (Bottom -Mid), System 2 (,𝑃-1.−,𝑃-2.)...
	E Synthesized Orders and FRF comparison for all measurement locations

	Order sections and FRF’s based on modal parameters for pressure measurements at 528 mm, 710 mm, 935 mm, 1219 mm, 1442 mm, 1623 mm and 2130 mm are shown in sections E.1, E.2, E.3, E.4, E.5, E.6 and E.7 respectively.
	E.1 Order and FRF synthesis for location 528 mm from pump outlet

	Figure 59: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 528 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 60: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 528 mm from Pump Outlet
	E.2 Order and FRF synthesis for location 710 mm from pump outlet

	Figure 61:Synthesized and Measured Comparison of 9th and 18th Order Sections at location 710 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 62: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 710 mm from Pump Outlet
	E.3 Order and FRF synthesis for location 935 mm from pump outlet

	Figure 63: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 935 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 64: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 935 mm from Pump Outlet
	E.4 Order and FRF synthesis for location 1219 mm from pump outlet

	Figure 65: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 1219 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 66: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 1219 mm from Pump Outlet
	E.5 Order and FRF synthesis for location 1442 mm from pump outlet

	Figure 67: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 1442 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 68: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 1442 mm from Pump Outlet
	E.6 Order and FRF synthesis for location 1623 mm from pump outlet

	Figure 69: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 1623 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 70: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 1623 mm from Pump Outlet
	E.7 Order and FRF synthesis for location 2130 mm from pump outlet

	Figure 71: Synthesized and Measured Comparison of 9th and 18th Order Sections at location 2130 mm from Pump Outlet for 9th Order (Top) and 18th Order (Bottom)
	Figure 72: Comparison of Measured FRF and FRF Expanded using Modal Parameters at Location 2130 mm from Pump Outlet
	F MATLAB Processing

	MATLAB codes are provided for Source Flow Ripple processing and validation for 1500 psi CPSS, SBN Characterization and SBN Video creation, FRF based on pump outlet pressure using modal expansion and energy balancing method.
	F.1 Source Flow Ripple Processing

	The first 5 pump order sections must be exported from LMS Test.Lab to MATLAB in a single .MAT file for each pressure transducer measurement: System 1 – P0 (S1P0), System 1 – P1 (S1P1), System 2 – P0 (S2P0) and System 2 – P1 (S2P1). The motor speed ran...
	F.1.1 Source Flow Ripple Processing for 1500 psi CPSS
	F.2 SBN Characterization and SBN Video

	This SBN processing script exports dynamic force data and integrated acceleration data from LMS Test.Lab in separate files for each of the first 5 orders. The order data is then sorted using a function called Sort_SBN_Data. The dynamic pressure measur...
	F.2.1 Measured SBN Processing and SBN Video Processing
	F.2.2 Sort_SBN_Data function
	F.3 FRF using Modal Expansion and Order Synthesis

	Order Based Modal Analysis should be performed in LMS Test.Lab. The OBMA results are input into 4 sheets of an excel file in a pre-processing routine as shown. The first sheet is for the mode shapes for all modes extracted using OBMA. Column A shows t...
	Figure 73: Sheet 1 OBMA Excel File Pre-Processing
	Sheet 2 is for the complex reference factors formatted identically to Sheet 1. There should a reference factor for each mode for all reference locations. The pump outlet (0mm) was the reference location for the OBMA processing in this project.
	Figure 74: Sheet 2 OBMA Excel File Pre-Processing
	Sheet 3 Column A and Column B are identical to Sheet 1. Column C and Column D are the real and imaginary parts of the lower residual. Column E and Column F are the real and imaginary parts of the upper residual. It is important that Column A is sorted...
	Figure 75: Sheet 3 OBMA Excel File Pre-Processing
	Right click on the OBMA processing in LMS Test.Lab and navigate to the properties tab. Select ALL properties and copy and paste into cell A1 of sheet 4. It is important that the real part is in column M and the imaginary part is in Column L. Deleting ...
	Figure 76: Sheet 4 OBMA Excel File Pre-Processing
	The desired location for modal expansion is input as the exp_loc variable. The motor speed range for each order section should be updated appropriately. Only the 9th and 18th order FRF’s were processed using this technique.
	F.3.1 Modal Expansion FRF Processing
	F.3.2 modparam function
	F.3.3 ExpandShapes function
	F.3.4 SynthOrders function
	F.4 Energy Balancing

	Energy balance processing requires the source flow ripple, measured outlet dynamic pressure, measured dynamic force and integrated measured acceleration from each of the first 5 order sections in separate .MAT files. A .mat file for the FRF generated ...
	F.4.1 Energy Balance Processing
	F.4.2 sortdata function
	F.4.3 Noise_Metrics Function
	G Copyright documentation



